Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery.

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
International Journal of Neural Systems Pub Date : 2022-09-01 Epub Date: 2022-07-25 DOI:10.1142/S0129065722500393
Fangzhou Xu, Gege Dong, Jincheng Li, Qingbo Yang, Lei Wang, Yanna Zhao, Yihao Yan, Jinzhao Zhao, Shaopeng Pang, Dongju Guo, Yang Zhang, Jiancai Leng
{"title":"Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery.","authors":"Fangzhou Xu,&nbsp;Gege Dong,&nbsp;Jincheng Li,&nbsp;Qingbo Yang,&nbsp;Lei Wang,&nbsp;Yanna Zhao,&nbsp;Yihao Yan,&nbsp;Jinzhao Zhao,&nbsp;Shaopeng Pang,&nbsp;Dongju Guo,&nbsp;Yang Zhang,&nbsp;Jiancai Leng","doi":"10.1142/S0129065722500393","DOIUrl":null,"url":null,"abstract":"<p><p>The motor imagery brain-computer interface (MI-BCI) system is currently one of the most advanced rehabilitation technologies, and it can be used to restore the motor function of stroke patients. The deep learning algorithms in the MI-BCI system require lots of training samples, but the electroencephalogram (EEG) data of stroke patients is quite scarce. Therefore, the expansion of EEG data has become an important part of stroke clinical rehabilitation research. In this paper, a deep convolution generative adversarial network (DCGAN) model is proposed to generate artificial EEG data and further expand the scale of the stroke dataset. First, multichannel one-dimensional EEG data is converted into a two-dimensional EEG spectrogram using EEG2Image based on the modified S-transform. Then, DCGAN is used to artificially generate EEG data based on MI. Finally, the validity of the generated artificial EEG data is proved. This paper preliminarily indicates that generating artificial stroke data is a promising strategy, which contributes to the further development of stroke clinical rehabilitation.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 9","pages":"2250039"},"PeriodicalIF":6.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500393","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8

Abstract

The motor imagery brain-computer interface (MI-BCI) system is currently one of the most advanced rehabilitation technologies, and it can be used to restore the motor function of stroke patients. The deep learning algorithms in the MI-BCI system require lots of training samples, but the electroencephalogram (EEG) data of stroke patients is quite scarce. Therefore, the expansion of EEG data has become an important part of stroke clinical rehabilitation research. In this paper, a deep convolution generative adversarial network (DCGAN) model is proposed to generate artificial EEG data and further expand the scale of the stroke dataset. First, multichannel one-dimensional EEG data is converted into a two-dimensional EEG spectrogram using EEG2Image based on the modified S-transform. Then, DCGAN is used to artificially generate EEG data based on MI. Finally, the validity of the generated artificial EEG data is proved. This paper preliminarily indicates that generating artificial stroke data is a promising strategy, which contributes to the further development of stroke clinical rehabilitation.

基于深度卷积生成对抗网络的脑卒中后运动图像康复脑电数据增强。
运动图像脑机接口(MI-BCI)系统是目前最先进的康复技术之一,可用于恢复脑卒中患者的运动功能。MI-BCI系统中的深度学习算法需要大量的训练样本,而脑卒中患者的脑电图(EEG)数据非常稀缺。因此,脑电数据的扩充已成为脑卒中临床康复研究的重要组成部分。本文提出了一种深度卷积生成对抗网络(deep convolution generative adversarial network, DCGAN)模型来生成人工脑电数据,并进一步扩大脑卒中数据集的规模。首先,利用基于改进s变换的EEG2Image将多通道一维脑电数据转换成二维脑电频谱图;在此基础上,利用DCGAN对人工脑电数据进行人工生成,最后对人工脑电数据的有效性进行了验证。本文初步指出,人工脑卒中数据生成是一种很有前途的策略,有助于脑卒中临床康复的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信