Ruixue Wang, Hongyi Xie, Xi Wang, Yingqi Liu, Zhengquan Su, Zhaoguang Zheng
{"title":"A synthetic biscoumarin suppresses lung cancer cell proliferation and induces cell apoptosis by increasing expression of RIP1.","authors":"Ruixue Wang, Hongyi Xie, Xi Wang, Yingqi Liu, Zhengquan Su, Zhaoguang Zheng","doi":"10.4103/cjp.cjp_107_21","DOIUrl":null,"url":null,"abstract":"<p><p>Coumarin has a variety of biological activities and widely exists in plants. Biscoumarin, derived from coumarin, their synthetic methods and bioactivities of biscoumarins is the hotspot of the current research. In this study, we evaluated for the first time the anticancer of a synthetic biscoumarin (3,3'-(4-chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one, C3) on lung cancer cells and explored the related mechanism. C3 was simply prepared by 4-hydroxycoumarin and 4-chlorobenzaldehyde under ethanol. The structure of C3 was elucidated by various spectroscopic analyses. The antiproliferation effect of C3 was evaluated by the cell counting kit-8 assay. Cell cycle and apoptosis analysis were detected by flow cytometry. The expression of correlated proteins was determined using Western blotting. The result showed that C3 displayed a strong cytostatic effect on Lewis lung cancer (LLC) cells. C3 inhibited the proliferation of LLC cells, and induced G2/M phase cell cycle arrest. In addition, C3 possessed a significant reduction on cell apoptosis by increasing of RIP1 expression. Our data showed that C3 suppresses lung cancer cell proliferation and induces cell apoptosis, which is possibly involved with the RIP1.</p>","PeriodicalId":10251,"journal":{"name":"Chinese Journal of Physiology","volume":"65 3","pages":"136-142"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjp.cjp_107_21","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coumarin has a variety of biological activities and widely exists in plants. Biscoumarin, derived from coumarin, their synthetic methods and bioactivities of biscoumarins is the hotspot of the current research. In this study, we evaluated for the first time the anticancer of a synthetic biscoumarin (3,3'-(4-chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one, C3) on lung cancer cells and explored the related mechanism. C3 was simply prepared by 4-hydroxycoumarin and 4-chlorobenzaldehyde under ethanol. The structure of C3 was elucidated by various spectroscopic analyses. The antiproliferation effect of C3 was evaluated by the cell counting kit-8 assay. Cell cycle and apoptosis analysis were detected by flow cytometry. The expression of correlated proteins was determined using Western blotting. The result showed that C3 displayed a strong cytostatic effect on Lewis lung cancer (LLC) cells. C3 inhibited the proliferation of LLC cells, and induced G2/M phase cell cycle arrest. In addition, C3 possessed a significant reduction on cell apoptosis by increasing of RIP1 expression. Our data showed that C3 suppresses lung cancer cell proliferation and induces cell apoptosis, which is possibly involved with the RIP1.
期刊介绍:
Chinese Journal of Physiology is a multidisciplinary open access journal.
Chinese Journal of Physiology (CJP) publishes high quality original research papers in physiology and pathophysiology by authors all over the world. CJP welcomes submitted research papers in all aspects of physiology science in the molecular, cellular, tissue and systemic levels. Multidisciplinary sciences with a focus to understand the role of physiology in health and disease are also encouraged.
Chinese Journal of Physiology accepts fourfold article types: Original Article, Review Article (Mini-Review included), Short Communication, and Editorial. There is no cost for readers to access the full-text contents of publications.