{"title":"Insulin sensitizer and antihyperlipidemic effects of <i>Cajanus cajan</i> (L.) millsp. root in methylglyoxal-induced diabetic rats.","authors":"Shu-Er Yang, Yen-Fong Lin, Jiunn-Wang Liao, Jian-Ting Chen, Chien-Lin Chen, Chen-I Chen, Shih-Lan Hsu, Tuzz-Ying Song","doi":"10.4103/cjp.cjp_88_21","DOIUrl":null,"url":null,"abstract":"<p><p>Cajanus cajan (L.) Millsp., known as pigeon pea, is one of the major grain legume crops of the tropical world. It recognizes as an ethnomedicine to possess various functions, such as helping in healing wound and cancer therapy. We investigated whether 95% ethanol extracts from C. cajan root (EECR) protect against methylglyoxal (MGO)-induced insulin resistance (IR) and hyperlipidemia in male Wistar rats and explored its possible mechanisms. The hypoglycemic potential of EECR was evaluated using α-amylase, α-glucosidase activities, and advanced glycation end products (AGEs) formation. For in vivo study, the rats were divided into six groups and orally supplemented with MGO except for Group 1 (controls). Group 2 was supplemented with MGO only, Group 3: MGO + metformin, Group 4: MGO + Low dose-EECR (L-EECR; 10 mg/kg bw), Group 5: MGO + Middle dose-EECR (M-EECR; 50 mg/kg bw), and Group 6: MGO + High dose-EECR (H-EECR; 100 mg/kg bw). EECR possessed good inhibition of α-glucosidase, α-amylase activities, and AGEs formation (IC<sub>50</sub> = 0.12, 0.32, and 0.50 mg/mL), respectively. MGO significantly increased serum levels of blood glucose (GLU), glycosylated hemoglobin, homeostasis model assessment of IR, AGEs, lipid biochemical values, and atherogenic index, whereas EECR decreased these levels in a dose-dependent manner. EECR can also act as an insulin sensitizer, which significantly decreased (47%, P < 0.05) the blood GLU levels after intraperitoneal injection of insulin in the insulin tolerance tests. The hypoglycemic and antihyperlipidemic mechanisms of EECR are likely through several possible pathways including the inhibition of carbohydrate-hydrolyzing enzymes (α-glucosidase and α-amylase) and the enhancement of MGO-trapping effects on inhibition of AGEs formation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjp.cjp_88_21","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Cajanus cajan (L.) Millsp., known as pigeon pea, is one of the major grain legume crops of the tropical world. It recognizes as an ethnomedicine to possess various functions, such as helping in healing wound and cancer therapy. We investigated whether 95% ethanol extracts from C. cajan root (EECR) protect against methylglyoxal (MGO)-induced insulin resistance (IR) and hyperlipidemia in male Wistar rats and explored its possible mechanisms. The hypoglycemic potential of EECR was evaluated using α-amylase, α-glucosidase activities, and advanced glycation end products (AGEs) formation. For in vivo study, the rats were divided into six groups and orally supplemented with MGO except for Group 1 (controls). Group 2 was supplemented with MGO only, Group 3: MGO + metformin, Group 4: MGO + Low dose-EECR (L-EECR; 10 mg/kg bw), Group 5: MGO + Middle dose-EECR (M-EECR; 50 mg/kg bw), and Group 6: MGO + High dose-EECR (H-EECR; 100 mg/kg bw). EECR possessed good inhibition of α-glucosidase, α-amylase activities, and AGEs formation (IC50 = 0.12, 0.32, and 0.50 mg/mL), respectively. MGO significantly increased serum levels of blood glucose (GLU), glycosylated hemoglobin, homeostasis model assessment of IR, AGEs, lipid biochemical values, and atherogenic index, whereas EECR decreased these levels in a dose-dependent manner. EECR can also act as an insulin sensitizer, which significantly decreased (47%, P < 0.05) the blood GLU levels after intraperitoneal injection of insulin in the insulin tolerance tests. The hypoglycemic and antihyperlipidemic mechanisms of EECR are likely through several possible pathways including the inhibition of carbohydrate-hydrolyzing enzymes (α-glucosidase and α-amylase) and the enhancement of MGO-trapping effects on inhibition of AGEs formation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.