Degradation of isoniazid by anodic oxidation and subcritical water oxidation methods: Application of Box-Behnken design.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2022-01-01 Epub Date: 2022-01-24 DOI:10.1080/26896583.2022.2026192
Özkan Görmez, Selda Doğan Çalhan, Belgin Gözmen
{"title":"Degradation of isoniazid by anodic oxidation and subcritical water oxidation methods: Application of Box-Behnken design.","authors":"Özkan Görmez,&nbsp;Selda Doğan Çalhan,&nbsp;Belgin Gözmen","doi":"10.1080/26896583.2022.2026192","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceutical compounds released into the aquatic environment are known to cause toxic effects on the environment. Isoniazid is widely used in the treatment of tuberculosis and is, therefore, frequently encountered in environmental waters. In this study, the degradation of isoniazid was investigated by anodic oxidation and subcritical water oxidation method which are members of Advanced Oxidation Processes. The Box-Behnken Design was used to determine the effects of current, initial concentration, and electrolysis time on mineralization in the anodic oxidation process, which carried out a cell with a Pt cathode and boron-doped diamond anode. The highest mineralization value of 78.14% was achieved at optimal conditions of 300 mA, 3 h, and 100 mg/L initial concentration. The degradation of Isoniazid was also investigated under subcritical water conditions using an ecological oxidizing agent, H<sub>2</sub>O<sub>2</sub>. The maximum mineralization rate of 72.23% was obtained when 100 mM H<sub>2</sub>O<sub>2</sub> was used for a 90 min treatment at 125 °C for 100 mg/L Isoniazid solution in the subcritical water oxidation process. The LC-MS results showed that the degradation products obtained by AO and SWO methods were different from each other. Finally, possible degradation mechanisms are proposed according to the degradation products obtained for both processes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26896583.2022.2026192","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Pharmaceutical compounds released into the aquatic environment are known to cause toxic effects on the environment. Isoniazid is widely used in the treatment of tuberculosis and is, therefore, frequently encountered in environmental waters. In this study, the degradation of isoniazid was investigated by anodic oxidation and subcritical water oxidation method which are members of Advanced Oxidation Processes. The Box-Behnken Design was used to determine the effects of current, initial concentration, and electrolysis time on mineralization in the anodic oxidation process, which carried out a cell with a Pt cathode and boron-doped diamond anode. The highest mineralization value of 78.14% was achieved at optimal conditions of 300 mA, 3 h, and 100 mg/L initial concentration. The degradation of Isoniazid was also investigated under subcritical water conditions using an ecological oxidizing agent, H2O2. The maximum mineralization rate of 72.23% was obtained when 100 mM H2O2 was used for a 90 min treatment at 125 °C for 100 mg/L Isoniazid solution in the subcritical water oxidation process. The LC-MS results showed that the degradation products obtained by AO and SWO methods were different from each other. Finally, possible degradation mechanisms are proposed according to the degradation products obtained for both processes.

阳极氧化和亚临界水氧化法降解异烟肼:Box-Behnken设计的应用。
已知释放到水生环境中的药物化合物会对环境造成毒性作用。异烟肼广泛用于治疗结核病,因此在环境水体中经常遇到。研究了高级氧化法中的阳极氧化法和亚临界水氧化法对异烟肼的降解。采用Box-Behnken设计来确定电流、初始浓度和电解时间对阳极氧化过程中矿化的影响,以铂阴极和掺硼金刚石阳极为电池。在300 mA、3 h、100 mg/L初始浓度条件下,矿化率最高,达78.14%。在亚临界水条件下,采用生态氧化剂H2O2对异烟肼进行了降解研究。100 mg/L异烟肼溶液在亚临界水氧化过程中,以100 mM H2O2在125℃下处理90 min,矿化率达到72.23%。LC-MS结果表明,AO法和SWO法得到的降解产物存在差异。最后,根据两种工艺的降解产物,提出了可能的降解机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信