Prenatal Zinc Supplementation Ameliorates Hippocampal Astrocytes Activation and Inflammatory Cytokines Expression Induced by Lipopolysaccharide in a Rat Model of Maternal Immune Activation.
{"title":"Prenatal Zinc Supplementation Ameliorates Hippocampal Astrocytes Activation and Inflammatory Cytokines Expression Induced by Lipopolysaccharide in a Rat Model of Maternal Immune Activation.","authors":"Ebrahim Savareh, Nahid Davoodian, Ronak Mousaviyan, Maryam Ghasemi-Kasman, Ali Atashabparvar, Ebrahim Eftekhar","doi":"10.32598/bcn.2021.3361.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Evidence suggests that gestational exposure to Lipopolysaccharide (LPS) results in fetal zinc deficiency and eventually neurodevelopmental abnormalities. In this study, we utilized a rat model of Maternal Immune Activation (MIA) to investigate the possible neuroprotective effects of zinc supplementation during pregnancy on hippocampal astrocytes activation as well as inflammatory cytokines expression in adult offspring.</p><p><strong>Methods: </strong>Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on Gestational Days (GD) 15 and 16, and orally gavaged with zinc sulfate (30 mg/kg) during pregnancy. Astrocyte density and histological assessment were evaluated in the hippocampus of adult offspring on Postnatal Days (PND) 60 to 62. Also, the mRNA levels of <i>IL-6, TNF-α, IL-1β, NF-κB</i>, and <i>GFAP</i> were measured using qPCR analysis.</p><p><strong>Results: </strong>Prenatal exposure to LPS resulted in upregulated expression levels of <i>IL-6, TNF-α, NF-κB</i>, and <i>GFAP</i> in the hippocampus of adult pups. Moreover, the offspring from the LPS group showed an increased astrocyte density in the CA1 region with no histological alterations in CA1 and CA3 areas. However, maternal zinc supplementation ameliorated the LPS-induced inflammatory alterations.</p><p><strong>Conclusion: </strong>This study supports the premise that zinc supplementation during pregnancy might be an early treatment option to inhibit hippocampal inflammation induced by the maternal immune response to infectious agents.</p><p><strong>Highlights: </strong>Maternal immune activation induced mild hippocampal inflammation in adult offspring.Zinc supplementation suppressed LPS-induced hippocampal inflammation in offspring.Zinc might be an early therapeutic option to inhibit neurodevelopmental impairments.</p><p><strong>Plain language summary: </strong>Schizophrenia is a chronic and disabling psychiatric disorder, affecting an estimated one percent of the world's population. To date, the biological mechanisms underlying this mental disorder remain largely elusive, however, research has demonstrated the involvement of both genetic and environmental factors. Of environmental factors, gestational exposure to rubella, influenza, and genital-reproductive infections have gained particular interest among researchers. Based on this evidence, in the present study, we used an animal model of schizophrenia and showed the beneficial effect of zinc supplementation during pregnancy to protect against LPS-induced inflammation in the hippocampus of adult offspring. Collectively, our study provides support for the premise that early treatment might be a suitable option to prevent schizophrenia risk in progeny.</p>","PeriodicalId":8701,"journal":{"name":"Basic and Clinical Neuroscience","volume":"13 3","pages":"335-347"},"PeriodicalIF":1.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4e/bf/BCN-13-335.PMC9706288.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/bcn.2021.3361.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Introduction: Evidence suggests that gestational exposure to Lipopolysaccharide (LPS) results in fetal zinc deficiency and eventually neurodevelopmental abnormalities. In this study, we utilized a rat model of Maternal Immune Activation (MIA) to investigate the possible neuroprotective effects of zinc supplementation during pregnancy on hippocampal astrocytes activation as well as inflammatory cytokines expression in adult offspring.
Methods: Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on Gestational Days (GD) 15 and 16, and orally gavaged with zinc sulfate (30 mg/kg) during pregnancy. Astrocyte density and histological assessment were evaluated in the hippocampus of adult offspring on Postnatal Days (PND) 60 to 62. Also, the mRNA levels of IL-6, TNF-α, IL-1β, NF-κB, and GFAP were measured using qPCR analysis.
Results: Prenatal exposure to LPS resulted in upregulated expression levels of IL-6, TNF-α, NF-κB, and GFAP in the hippocampus of adult pups. Moreover, the offspring from the LPS group showed an increased astrocyte density in the CA1 region with no histological alterations in CA1 and CA3 areas. However, maternal zinc supplementation ameliorated the LPS-induced inflammatory alterations.
Conclusion: This study supports the premise that zinc supplementation during pregnancy might be an early treatment option to inhibit hippocampal inflammation induced by the maternal immune response to infectious agents.
Highlights: Maternal immune activation induced mild hippocampal inflammation in adult offspring.Zinc supplementation suppressed LPS-induced hippocampal inflammation in offspring.Zinc might be an early therapeutic option to inhibit neurodevelopmental impairments.
Plain language summary: Schizophrenia is a chronic and disabling psychiatric disorder, affecting an estimated one percent of the world's population. To date, the biological mechanisms underlying this mental disorder remain largely elusive, however, research has demonstrated the involvement of both genetic and environmental factors. Of environmental factors, gestational exposure to rubella, influenza, and genital-reproductive infections have gained particular interest among researchers. Based on this evidence, in the present study, we used an animal model of schizophrenia and showed the beneficial effect of zinc supplementation during pregnancy to protect against LPS-induced inflammation in the hippocampus of adult offspring. Collectively, our study provides support for the premise that early treatment might be a suitable option to prevent schizophrenia risk in progeny.
期刊介绍:
BCN is an international multidisciplinary journal that publishes editorials, original full-length research articles, short communications, reviews, methodological papers, commentaries, perspectives and “news and reports” in the broad fields of developmental, molecular, cellular, system, computational, behavioral, cognitive, and clinical neuroscience. No area in the neural related sciences is excluded from consideration, although priority is given to studies that provide applied insights into the functioning of the nervous system. BCN aims to advance our understanding of organization and function of the nervous system in health and disease, thereby improving the diagnosis and treatment of neural-related disorders. Manuscripts submitted to BCN should describe novel results generated by experiments that were guided by clearly defined aims or hypotheses. BCN aims to provide serious ties in interdisciplinary communication, accessibility to a broad readership inside Iran and the region and also in all other international academic sites, effective peer review process, and independence from all possible non-scientific interests. BCN also tries to empower national, regional and international collaborative networks in the field of neuroscience in Iran, Middle East, Central Asia and North Africa and to be the voice of the Iranian and regional neuroscience community in the world of neuroscientists. In this way, the journal encourages submission of editorials, review papers, commentaries, methodological notes and perspectives that address this scope.