{"title":"Probability of Disease Extinction or Outbreak in a Stochastic Epidemic Model for West Nile Virus Dynamics in Birds","authors":"Milliward Maliyoni","doi":"10.1007/s10441-020-09391-y","DOIUrl":null,"url":null,"abstract":"<div><p>Thresholds for disease extinction provide essential information for the prevention and control of diseases. In this paper, a stochastic epidemic model, a continuous-time Markov chain, for the transmission dynamics of West Nile virus in birds is developed based on the assumptions of its analogous deterministic model. The branching process is applied to derive the extinction threshold for the stochastic model and conditions for disease extinction or persistence. The probability of disease extinction computed from the branching process is shown to be in good agreement with the probability approximated from numerical simulations. The disease dynamics of both models are compared to ascertain the effect of demographic stochasticity on West Nile virus dynamics. Analytical and numerical results show differences in model predictions and asymptotic dynamics between stochastic and deterministic models that are crucial for the prevention of disease outbreaks. It is found that there is a high probability of disease extinction if the disease emerges from exposed mosquitoes unlike if it emerges from infectious mosquitoes and birds. Finite-time to disease extinction is estimated using sample paths and it is shown that the epidemic duration is shortest if the disease is introduced by exposed mosquitoes.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10441-020-09391-y","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-020-09391-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15
Abstract
Thresholds for disease extinction provide essential information for the prevention and control of diseases. In this paper, a stochastic epidemic model, a continuous-time Markov chain, for the transmission dynamics of West Nile virus in birds is developed based on the assumptions of its analogous deterministic model. The branching process is applied to derive the extinction threshold for the stochastic model and conditions for disease extinction or persistence. The probability of disease extinction computed from the branching process is shown to be in good agreement with the probability approximated from numerical simulations. The disease dynamics of both models are compared to ascertain the effect of demographic stochasticity on West Nile virus dynamics. Analytical and numerical results show differences in model predictions and asymptotic dynamics between stochastic and deterministic models that are crucial for the prevention of disease outbreaks. It is found that there is a high probability of disease extinction if the disease emerges from exposed mosquitoes unlike if it emerges from infectious mosquitoes and birds. Finite-time to disease extinction is estimated using sample paths and it is shown that the epidemic duration is shortest if the disease is introduced by exposed mosquitoes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.