Chakravarty R Alla Chaitanya, John M Snyder, Keith Godin, Derek Nowrouzezahrai, Nikunj Raghuvanshi
{"title":"Adaptive Sampling for Sound Propagation.","authors":"Chakravarty R Alla Chaitanya, John M Snyder, Keith Godin, Derek Nowrouzezahrai, Nikunj Raghuvanshi","doi":"10.1109/TVCG.2019.2898765","DOIUrl":null,"url":null,"abstract":"<p><p>Precomputed sound propagation samples acoustics at discrete scene probe positions to support dynamic listener locations. An offline 3D numerical simulation is performed at each probe and the resulting field is encoded for runtime rendering with dynamic sources. Prior work place probes on a uniform grid, requiring high density to resolve narrow spaces. Our adaptive sampling approach varies probe density based on a novel \"local diameter\" measure of the space surrounding a given point, evaluated by stochastically tracing paths in the scene. We apply this measure to layout probes so as to smoothly adapt resolution and eliminate undersampling in corners, narrow corridors and stairways, while coarsening appropriately in more open areas. Coupled with a new runtime interpolator based on radial weights over geodesic paths, we achieve smooth acoustic effects that respect scene boundaries as both the source or listener move, unlike existing visibility-based solutions. We consistently demonstrate quality improvement over prior work at fixed cost.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"1846-1854"},"PeriodicalIF":4.7000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898765","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2019.2898765","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 9
Abstract
Precomputed sound propagation samples acoustics at discrete scene probe positions to support dynamic listener locations. An offline 3D numerical simulation is performed at each probe and the resulting field is encoded for runtime rendering with dynamic sources. Prior work place probes on a uniform grid, requiring high density to resolve narrow spaces. Our adaptive sampling approach varies probe density based on a novel "local diameter" measure of the space surrounding a given point, evaluated by stochastically tracing paths in the scene. We apply this measure to layout probes so as to smoothly adapt resolution and eliminate undersampling in corners, narrow corridors and stairways, while coarsening appropriately in more open areas. Coupled with a new runtime interpolator based on radial weights over geodesic paths, we achieve smooth acoustic effects that respect scene boundaries as both the source or listener move, unlike existing visibility-based solutions. We consistently demonstrate quality improvement over prior work at fixed cost.
期刊介绍:
TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.