{"title":"Induction of Apoptosis in the U937 Cell Line Co-cultured with Adipose-derived Stem Cells Secreting Bone Morphogenetic Protein-4.","authors":"Mostafa Ghorban Khan Tafreshi, Zohreh Mazaheri, Mansour Heidari, Nahid Babaei, Abbas Doosti","doi":"10.22088/IJMCM.BUMS.10.4.265","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor-beta (TGF-β) plays a significant role in tumorigenesis. MiR-181b is a multifunctional miRNA involved in numerous cellular processes, such as cell fate and cell invasion. This study aimed to examine whether the co-culture of adipose-derived stem cells (ADSCs), highly expressing bone morphogenetic protein-4, with the U937 cell line, which is a human myeloid leukemia cell line, is able to induce cell death in this cancer cell line, considering the potential ability of ADSCs to migrate from tumor sites. Cell surface markers, namely CD73 and CD105, were analyzed to verify the identity of mesenchymal stem cells isolated from adipose tissue. Besides, the osteogenic and adipogenic differentiation potentials of ADSCs were evaluated. The induction of cell death and apoptosis in the U937 cell line was assessed using MTT and annexin V/ PI assays, respectively. The expression levels of miR-181 and <i>TGF-β</i> were determined in the co-culture system using real-time PCR. The results of MTT and annexin V/ PI assays showed that BMP4-expressing ADSCs could inhibit cell viability and induce apoptosis in U937 cells in the co-culture system. The co-culture of ADSCs, highly expressing BMP-4, with the U937 cell line led to the downregulation of miR-181 and <i>TGF-β</i> genes in the human cancer cell line. ADSCs may further be studied as a candidate for the treatment of hematological cancers.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bb/44/ijmcm-10-265.PMC9273154.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.10.4.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transforming growth factor-beta (TGF-β) plays a significant role in tumorigenesis. MiR-181b is a multifunctional miRNA involved in numerous cellular processes, such as cell fate and cell invasion. This study aimed to examine whether the co-culture of adipose-derived stem cells (ADSCs), highly expressing bone morphogenetic protein-4, with the U937 cell line, which is a human myeloid leukemia cell line, is able to induce cell death in this cancer cell line, considering the potential ability of ADSCs to migrate from tumor sites. Cell surface markers, namely CD73 and CD105, were analyzed to verify the identity of mesenchymal stem cells isolated from adipose tissue. Besides, the osteogenic and adipogenic differentiation potentials of ADSCs were evaluated. The induction of cell death and apoptosis in the U937 cell line was assessed using MTT and annexin V/ PI assays, respectively. The expression levels of miR-181 and TGF-β were determined in the co-culture system using real-time PCR. The results of MTT and annexin V/ PI assays showed that BMP4-expressing ADSCs could inhibit cell viability and induce apoptosis in U937 cells in the co-culture system. The co-culture of ADSCs, highly expressing BMP-4, with the U937 cell line led to the downregulation of miR-181 and TGF-β genes in the human cancer cell line. ADSCs may further be studied as a candidate for the treatment of hematological cancers.
期刊介绍:
The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).