Khaleda Akhter Sathi, Md Kamal Hosain, Md Azad Hossain
{"title":"Analysis of Induced Field in the Brain Tissue by Transcranial Magnetic Stimulation Using Halo-V Assembly Coil.","authors":"Khaleda Akhter Sathi, Md Kamal Hosain, Md Azad Hossain","doi":"10.1155/2022/7424564","DOIUrl":null,"url":null,"abstract":"<p><p>As a noninvasive neuromodulation technique, transcranial magnetic stimulation (TMS) has already exhibited a great impact in clinical application and scientific research. This study presents a finite element method-based simulation of the Halo-V assembly (HVA) coil placed on the five-shell spherical human head model to examine the distributions of induced electric and magnetic fields. The performance of the designed HVA coil is evaluated by comparing the simulation results with the commercially available Halo-FO8 (HFA) assembly coil and standard single coils including the Halo and V coils. The simulation results indicate that the HVA coil shows an improved focality in terms of electric field distribution than the other single and assembly stimulation coils. Additionally, the effects of a magnetic shield plate and magnetic core on the designed HVA coil are investigated. Results indicate that the magnetic shield plate and magnetic core are proficient in further improving the stimulation focality. Therefore, the HVA TMS coil results in a safe and effective stimulation with enhanced focality of the target region as compared to the existing assembly coil.</p>","PeriodicalId":19124,"journal":{"name":"Neurology Research International","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303497/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/7424564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
As a noninvasive neuromodulation technique, transcranial magnetic stimulation (TMS) has already exhibited a great impact in clinical application and scientific research. This study presents a finite element method-based simulation of the Halo-V assembly (HVA) coil placed on the five-shell spherical human head model to examine the distributions of induced electric and magnetic fields. The performance of the designed HVA coil is evaluated by comparing the simulation results with the commercially available Halo-FO8 (HFA) assembly coil and standard single coils including the Halo and V coils. The simulation results indicate that the HVA coil shows an improved focality in terms of electric field distribution than the other single and assembly stimulation coils. Additionally, the effects of a magnetic shield plate and magnetic core on the designed HVA coil are investigated. Results indicate that the magnetic shield plate and magnetic core are proficient in further improving the stimulation focality. Therefore, the HVA TMS coil results in a safe and effective stimulation with enhanced focality of the target region as compared to the existing assembly coil.
期刊介绍:
Neurology Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies focusing on diseases of the nervous system, as well as normal neurological functioning. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.