Validation of Non-empirical Fat-free Mass Estimation Model for a Wrist-worn Device.

Q3 Biochemistry, Genetics and Molecular Biology
Journal of Electrical Bioimpedance Pub Date : 2022-06-25 eCollection Date: 2022-01-01 DOI:10.2478/joeb-2022-0006
Aleksandr Polokhin, Anna Pronina, Andrey Boev, Stas Gorbunov
{"title":"Validation of Non-empirical Fat-free Mass Estimation Model for a Wrist-worn Device.","authors":"Aleksandr Polokhin,&nbsp;Anna Pronina,&nbsp;Andrey Boev,&nbsp;Stas Gorbunov","doi":"10.2478/joeb-2022-0006","DOIUrl":null,"url":null,"abstract":"<p><p>Fat-free mass (FFM) estimation has dramatic importance for body composition evaluation, often providing a basis for treatment of obesity and muscular dystrophy. However, current methods of FFM estimation have several drawbacks, usually related to either cost-effectiveness and equipment size (dual-energy X-ray absorptiometry (DEXA) scan) or model limitations. In this study, we present and validate a new FFM estimation model based on hand-to-hand bioimpedance analysis (BIA) and arm volume. Forty-two participants underwent a full-body DEXA scan, a series of anthropometric measurements, and upper-body BIA measurements with the custom-designed wearable wrist-worn impedance meter. A new two truncated cones (TTC) model was trained on DEXA data and achieved the best performance metrics of 0.886 ± 0.051 r<sup>2</sup>, 0.052 ± 0.009 % mean average error, and 6.884 ± 1.283 kg maximal residual error in FFM estimation. The model further demonstrated its effectiveness in Bland-Altman comparisons with the skinfold thickness-based FFM estimation method, achieving the least mean bias (0.007 kg). The novel TTC model can provide an alternative to full-body BIA measurements, demonstrating an accurate FFM estimation independently of population variables.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":" ","pages":"31-38"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Fat-free mass (FFM) estimation has dramatic importance for body composition evaluation, often providing a basis for treatment of obesity and muscular dystrophy. However, current methods of FFM estimation have several drawbacks, usually related to either cost-effectiveness and equipment size (dual-energy X-ray absorptiometry (DEXA) scan) or model limitations. In this study, we present and validate a new FFM estimation model based on hand-to-hand bioimpedance analysis (BIA) and arm volume. Forty-two participants underwent a full-body DEXA scan, a series of anthropometric measurements, and upper-body BIA measurements with the custom-designed wearable wrist-worn impedance meter. A new two truncated cones (TTC) model was trained on DEXA data and achieved the best performance metrics of 0.886 ± 0.051 r2, 0.052 ± 0.009 % mean average error, and 6.884 ± 1.283 kg maximal residual error in FFM estimation. The model further demonstrated its effectiveness in Bland-Altman comparisons with the skinfold thickness-based FFM estimation method, achieving the least mean bias (0.007 kg). The novel TTC model can provide an alternative to full-body BIA measurements, demonstrating an accurate FFM estimation independently of population variables.

Abstract Image

Abstract Image

Abstract Image

腕戴式设备非经验无脂质量估计模型的验证。
无脂质量(Fat-free mass, FFM)估算对于身体成分评估具有重要意义,通常为肥胖和肌肉萎缩症的治疗提供依据。然而,目前的FFM估计方法有几个缺点,通常与成本效益和设备尺寸(双能x射线吸收仪(DEXA)扫描)或模型限制有关。在这项研究中,我们提出并验证了一个新的基于手对手生物阻抗分析(BIA)和手臂体积的FFM估计模型。42名参与者接受了全身DEXA扫描,一系列人体测量,以及定制设计的可穿戴式腕带阻抗计的上半身BIA测量。在DEXA数据上训练新的两截锥(two truncated cones, TTC)模型,在FFM估计中获得了0.886±0.051 r2、0.052±0.009%均值误差和6.884±1.283 kg最大残差的最佳性能指标。与基于皮褶厚度的FFM估计方法相比,该模型在Bland-Altman比较中进一步证明了其有效性,实现了最小的平均偏差(0.007 kg)。新的TTC模型可以替代全身BIA测量,证明了独立于种群变量的准确FFM估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信