Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yun Su, Xiaohui Rong, Ang Gao, Yuan Liu, Jianwei Li, Minglei Mao, Xingguo Qi, Guoliang Chai, Qinghua Zhang, Liumin Suo, Lin Gu, Hong Li, Xuejie Huang, Liquan Chen, Binyuan Liu, Yong-Sheng Hu
{"title":"Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries.","authors":"Yun Su,&nbsp;Xiaohui Rong,&nbsp;Ang Gao,&nbsp;Yuan Liu,&nbsp;Jianwei Li,&nbsp;Minglei Mao,&nbsp;Xingguo Qi,&nbsp;Guoliang Chai,&nbsp;Qinghua Zhang,&nbsp;Liumin Suo,&nbsp;Lin Gu,&nbsp;Hong Li,&nbsp;Xuejie Huang,&nbsp;Liquan Chen,&nbsp;Binyuan Liu,&nbsp;Yong-Sheng Hu","doi":"10.1038/s41467-022-31792-5","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ethylene oxide)-based solid-state electrolytes are widely considered promising candidates for the next generation of lithium and sodium metal batteries. However, several challenges, including low oxidation resistance and low cation transference number, hinder poly(ethylene oxide)-based electrolytes for broad applications. To circumvent these issues, here, we propose the design, synthesis and application of a fluoropolymer, i.e., poly(2,2,2-trifluoroethyl methacrylate). This polymer, when introduced into a poly(ethylene oxide)-based solid electrolyte, improves the electrochemical window stability and transference number. Via multiple physicochemical and theoretical characterizations, we identify the presence of tailored supramolecular bonds and peculiar morphological structures as the main factors responsible for the improved electrochemical performances. The polymeric solid electrolyte is also investigated in full lithium and sodium metal lab-scale cells. Interestingly, when tested in a single-layer pouch cell configuration in combination with a Li metal negative electrode and a LiMn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub>-based positive electrode, the polymeric solid-state electrolyte enables 200 cycles at 42 mA·g<sup>-1</sup> and 70 °C with a stable discharge capacity of approximately 2.5 mAh when an external pressure of 0.28 MPa is applied.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":" ","pages":"4181"},"PeriodicalIF":15.7000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296621/pdf/","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-022-31792-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 51

Abstract

Poly(ethylene oxide)-based solid-state electrolytes are widely considered promising candidates for the next generation of lithium and sodium metal batteries. However, several challenges, including low oxidation resistance and low cation transference number, hinder poly(ethylene oxide)-based electrolytes for broad applications. To circumvent these issues, here, we propose the design, synthesis and application of a fluoropolymer, i.e., poly(2,2,2-trifluoroethyl methacrylate). This polymer, when introduced into a poly(ethylene oxide)-based solid electrolyte, improves the electrochemical window stability and transference number. Via multiple physicochemical and theoretical characterizations, we identify the presence of tailored supramolecular bonds and peculiar morphological structures as the main factors responsible for the improved electrochemical performances. The polymeric solid electrolyte is also investigated in full lithium and sodium metal lab-scale cells. Interestingly, when tested in a single-layer pouch cell configuration in combination with a Li metal negative electrode and a LiMn0.6Fe0.4PO4-based positive electrode, the polymeric solid-state electrolyte enables 200 cycles at 42 mA·g-1 and 70 °C with a stable discharge capacity of approximately 2.5 mAh when an external pressure of 0.28 MPa is applied.

Abstract Image

Abstract Image

Abstract Image

高性能全固态碱金属电池用拓扑聚合物固体电解质的合理设计。
聚(环氧乙烷)基固态电解质被广泛认为是下一代锂和钠金属电池的有前途的候选者。然而,一些挑战,包括低抗氧化性和低阳离子转移数,阻碍了聚(环氧乙烷)电解质的广泛应用。为了避免这些问题,我们提出了一种含氟聚合物的设计、合成和应用,即聚(2,2,2-三氟乙基甲基丙烯酸酯)。当将该聚合物引入聚环氧乙烷基固体电解质中时,提高了电化学窗口稳定性和转移数。通过多种物理化学和理论表征,我们确定了定制超分子键和特殊形态结构的存在是提高电化学性能的主要因素。聚合物固体电解质也在全锂和钠金属实验室规模的电池中进行了研究。有趣的是,当在单层袋状电池配置中测试锂金属负极和limn0.6 fe0.4 po4基正极时,聚合物固态电解质可以在42 mA·g-1和70°C下进行200次循环,当施加0.28 MPa的外部压力时,稳定的放电容量约为2.5 mAh。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信