{"title":"Geo-Distribution Patterns of Soil Fungal Community of <i>Pennisetum flaccidum</i> in Tibet.","authors":"Guangyu Zhang, Zhenxi Shen, Gang Fu","doi":"10.3390/jof8111230","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pennisetum flaccidum</i> can be used as a pioneer species for the restoration of degraded grasslands and as a high-quality forage for local yak and sheep in alpine regions. The geographical distribution pattern of soil fungal community can modify that of <i>P. flaccidum</i>. A field survey along 32 sampling sites was conducted to explore the geo-distribution patterns of soil fungal community of <i>P. flaccidum</i> in Tibet. Soil fungal species, phylogenetic and function diversity generally had a closer correlation with longitude/elevation than latitude. The geo-distribution patterns of soil fungal species, phylogenetic and function diversity varied with soil depth. Soil fungal species, phylogenetic and function diversity had dissimilar geo-distribution patterns. Precipitation had stronger impacts on total abundance, species α-diversity, phylogenetic α-diversity, and function β-diversity than temperature for both topsoil (0-10 cm depth) and subtopsoil (10-20 cm depth). Furthermore, precipitation had stronger impacts on function α-diversity for topsoil, species β-diversity for topsoil, and phylogenetic β-diversity for subtopsoil than temperature. The combination of species, phylogenetic and function diversity can better reflect geo-distribution patterns of soil fungal community. Compared to global warming, the impact of precipitation change on the variation in soil fungal community of <i>P. flaccidum</i> should be given more attention.</p>","PeriodicalId":520671,"journal":{"name":"Journal of fungi (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699603/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fungi (Basel, Switzerland)","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof8111230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Pennisetum flaccidum can be used as a pioneer species for the restoration of degraded grasslands and as a high-quality forage for local yak and sheep in alpine regions. The geographical distribution pattern of soil fungal community can modify that of P. flaccidum. A field survey along 32 sampling sites was conducted to explore the geo-distribution patterns of soil fungal community of P. flaccidum in Tibet. Soil fungal species, phylogenetic and function diversity generally had a closer correlation with longitude/elevation than latitude. The geo-distribution patterns of soil fungal species, phylogenetic and function diversity varied with soil depth. Soil fungal species, phylogenetic and function diversity had dissimilar geo-distribution patterns. Precipitation had stronger impacts on total abundance, species α-diversity, phylogenetic α-diversity, and function β-diversity than temperature for both topsoil (0-10 cm depth) and subtopsoil (10-20 cm depth). Furthermore, precipitation had stronger impacts on function α-diversity for topsoil, species β-diversity for topsoil, and phylogenetic β-diversity for subtopsoil than temperature. The combination of species, phylogenetic and function diversity can better reflect geo-distribution patterns of soil fungal community. Compared to global warming, the impact of precipitation change on the variation in soil fungal community of P. flaccidum should be given more attention.