{"title":"Bismuth nanomaterials as contrast agents for radiography and computed tomography imaging and their quality/safety considerations.","authors":"Huan Yu, Haoxiang Guo, Yong Wang, Yangyun Wang, Leshuai Zhang","doi":"10.1002/wnan.1801","DOIUrl":null,"url":null,"abstract":"<p><p>Contrast agents for radiography and computed tomography (CT) scans are substances that can enhance the contrast of blood vessels and soft tissue with detailed imaging information of the diseased sites. However, the large doses, short circulation time and adverse effects are the intrinsic limitations of CT contrast agents, preventing their extended and safe use in the clinical setting. Bismuth nanoparticles (NPs) have gained attention for the high X-ray absorption of bismuth elements with acceptable biocompatibility, showing their potential to be translated into commercialized CT contrast agents. Compared with traditional iodine contrast agents, bismuth NPs are characterized by prolonged circulation time and enhanced contrast, largely due to the surface modification and enhanced permeability and retention effect of NPs. Bismuth NPs can also be flexibly upgraded into sophisticated nanoagents for multimodal imaging and therapeutic purposes by complexation with supporting chemicals, small molecule drugs, fluorescence labels, and other functional agents. Additionally, the affinity and retention of the bismuth NPs in the diseased sites can be further improved by modification of the targeting moiety on the NPs surface. However, a simple synthetic process and low complexity of bismuth NPs are highly recommended for scaling out and quality control of nanoagents with commercialization potential. Since product safety is a prerequisite for the translation of bismuth NPs from bench to the clinic, we focus on recent advances in the distribution, elimination, and toxicity of bismuth NPs previously reported. Finally, we delineate the associated mechanisms for nephrotoxicity and the strategy to reduce the toxicity of bismuth NPs. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1801"},"PeriodicalIF":8.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1801","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
Contrast agents for radiography and computed tomography (CT) scans are substances that can enhance the contrast of blood vessels and soft tissue with detailed imaging information of the diseased sites. However, the large doses, short circulation time and adverse effects are the intrinsic limitations of CT contrast agents, preventing their extended and safe use in the clinical setting. Bismuth nanoparticles (NPs) have gained attention for the high X-ray absorption of bismuth elements with acceptable biocompatibility, showing their potential to be translated into commercialized CT contrast agents. Compared with traditional iodine contrast agents, bismuth NPs are characterized by prolonged circulation time and enhanced contrast, largely due to the surface modification and enhanced permeability and retention effect of NPs. Bismuth NPs can also be flexibly upgraded into sophisticated nanoagents for multimodal imaging and therapeutic purposes by complexation with supporting chemicals, small molecule drugs, fluorescence labels, and other functional agents. Additionally, the affinity and retention of the bismuth NPs in the diseased sites can be further improved by modification of the targeting moiety on the NPs surface. However, a simple synthetic process and low complexity of bismuth NPs are highly recommended for scaling out and quality control of nanoagents with commercialization potential. Since product safety is a prerequisite for the translation of bismuth NPs from bench to the clinic, we focus on recent advances in the distribution, elimination, and toxicity of bismuth NPs previously reported. Finally, we delineate the associated mechanisms for nephrotoxicity and the strategy to reduce the toxicity of bismuth NPs. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.