Giulia Santopolo, Antonio Clemente, Estrella Rojo-Molinero, Sara Fernández, María Concepción Álvarez, Antonio Oliver, Roberto de la Rica
{"title":"Improved cytometric analysis of untouched lung leukocytes by enzymatic liquefaction of sputum samples.","authors":"Giulia Santopolo, Antonio Clemente, Estrella Rojo-Molinero, Sara Fernández, María Concepción Álvarez, Antonio Oliver, Roberto de la Rica","doi":"10.1186/s12575-022-00181-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phenotyping sputum-resident leukocytes and evaluating their functional status are essential analyses for exploring the cellular basis of pathological processes in the lungs, and flow cytometry is widely recognized as the gold-standard technique to address them. However, sputum-resident leukocytes are found in respiratory samples which need to be liquefied prior to cytometric analysis. Traditional liquefying procedures involve the use of a reducing agent such as dithiothreitol (DTT) in temperature-controlled conditions, which does not homogenize respiratory samples efficiently and impairs cell viability and functionality.</p><p><strong>Methods: </strong>Here we propose an enzymatic method that rapidly liquefies samples by means of generating O<sub>2</sub> bubbles with endogenous catalase. Sputum specimens from patients with suspected pulmonary infection were treated with DTT, the enzymatic method or PBS. We used turbidimetry to compare the liquefaction degree and cell counts were determined using a hemocytometer. Finally, we conducted a comparative flow cytometry study for evaluating frequencies of sputum-resident neutrophils, eosinophils and lymphocytes and their activation status after liquefaction.</p><p><strong>Results: </strong>Enzymatically treated samples were better liquefied than those treated with DTT or PBS, which resulted in a more accurate cytometric analysis. Frequencies of all cell subsets analyzed within liquefied samples were comparable between liquefaction methods. However, the gentle cell handling rendered by the enzymatic method improves cell viability and retains in vivo functional characteristics of sputum-resident leukocytes (with regard to HLA-DR, CD63 and CD11b expression).</p><p><strong>Conclusion: </strong>In conclusion, the proposed enzymatic liquefaction method improves the cytometric analysis of respiratory samples and leaves the cells widely untouched for properly addressing functional analysis of lung leukocytes.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":" ","pages":"17"},"PeriodicalIF":3.7000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673301/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-022-00181-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Phenotyping sputum-resident leukocytes and evaluating their functional status are essential analyses for exploring the cellular basis of pathological processes in the lungs, and flow cytometry is widely recognized as the gold-standard technique to address them. However, sputum-resident leukocytes are found in respiratory samples which need to be liquefied prior to cytometric analysis. Traditional liquefying procedures involve the use of a reducing agent such as dithiothreitol (DTT) in temperature-controlled conditions, which does not homogenize respiratory samples efficiently and impairs cell viability and functionality.
Methods: Here we propose an enzymatic method that rapidly liquefies samples by means of generating O2 bubbles with endogenous catalase. Sputum specimens from patients with suspected pulmonary infection were treated with DTT, the enzymatic method or PBS. We used turbidimetry to compare the liquefaction degree and cell counts were determined using a hemocytometer. Finally, we conducted a comparative flow cytometry study for evaluating frequencies of sputum-resident neutrophils, eosinophils and lymphocytes and their activation status after liquefaction.
Results: Enzymatically treated samples were better liquefied than those treated with DTT or PBS, which resulted in a more accurate cytometric analysis. Frequencies of all cell subsets analyzed within liquefied samples were comparable between liquefaction methods. However, the gentle cell handling rendered by the enzymatic method improves cell viability and retains in vivo functional characteristics of sputum-resident leukocytes (with regard to HLA-DR, CD63 and CD11b expression).
Conclusion: In conclusion, the proposed enzymatic liquefaction method improves the cytometric analysis of respiratory samples and leaves the cells widely untouched for properly addressing functional analysis of lung leukocytes.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.