{"title":"Importance of molecular dynamics equilibrium protocol on protein-lipid interaction near channel pore.","authors":"Wenjuan Jiang, Jerome Lacroix, Yun Lyna Luo","doi":"10.1016/j.bpr.2022.100080","DOIUrl":null,"url":null,"abstract":"<p><p>Multiscale molecular dynamics simulations using Martini coarse-grained (CG) and all-atom (AA) force fields are commonly used in membrane protein studies. In particular, reverse mapping an equilibrated CG model to an AA model offers an efficient way for preparing large membrane protein systems with complex protein shapes and lipid compositions. Here, we report that this hybrid CG-equilibrium-AA-production protocol may artificially increase lipid density and decrease hydration in ion channel pores walled with transmembrane gaps. To understand the origin of this conundrum, we conducted replicas of CG, AA, and CG reverse-mapped AA simulations of the pore domain of the mechanosensitive Piezo1 channel in a nonconducting conformation. Lipid/water density analysis and free energy calculations reveal that the lack of initial pore hydration allows excessive lipids to enter the upper pore lumen through gaps between pore helices during CG simulation. Due to the mismatch between CG and AA lipid kinetics, these pore lipids remain trapped in the subsequent AA simulations, despite unfavorable binding free energy. We tested several CG equilibrium protocols and found that a protocol restraining the whole lipid produces pore hydration consistent with AA results, thus eliminating this artifact for further studies of lipid gating and protein-lipid interactions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"100080"},"PeriodicalIF":4.6000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/7f/main.PMC9680783.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2022.100080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Multiscale molecular dynamics simulations using Martini coarse-grained (CG) and all-atom (AA) force fields are commonly used in membrane protein studies. In particular, reverse mapping an equilibrated CG model to an AA model offers an efficient way for preparing large membrane protein systems with complex protein shapes and lipid compositions. Here, we report that this hybrid CG-equilibrium-AA-production protocol may artificially increase lipid density and decrease hydration in ion channel pores walled with transmembrane gaps. To understand the origin of this conundrum, we conducted replicas of CG, AA, and CG reverse-mapped AA simulations of the pore domain of the mechanosensitive Piezo1 channel in a nonconducting conformation. Lipid/water density analysis and free energy calculations reveal that the lack of initial pore hydration allows excessive lipids to enter the upper pore lumen through gaps between pore helices during CG simulation. Due to the mismatch between CG and AA lipid kinetics, these pore lipids remain trapped in the subsequent AA simulations, despite unfavorable binding free energy. We tested several CG equilibrium protocols and found that a protocol restraining the whole lipid produces pore hydration consistent with AA results, thus eliminating this artifact for further studies of lipid gating and protein-lipid interactions.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.