Importance of molecular dynamics equilibrium protocol on protein-lipid interaction near channel pore.

IF 2.4 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2022-09-29 eCollection Date: 2022-12-14 DOI:10.1016/j.bpr.2022.100080
Wenjuan Jiang, Jerome Lacroix, Yun Lyna Luo
{"title":"Importance of molecular dynamics equilibrium protocol on protein-lipid interaction near channel pore.","authors":"Wenjuan Jiang,&nbsp;Jerome Lacroix,&nbsp;Yun Lyna Luo","doi":"10.1016/j.bpr.2022.100080","DOIUrl":null,"url":null,"abstract":"<p><p>Multiscale molecular dynamics simulations using Martini coarse-grained (CG) and all-atom (AA) force fields are commonly used in membrane protein studies. In particular, reverse mapping an equilibrated CG model to an AA model offers an efficient way for preparing large membrane protein systems with complex protein shapes and lipid compositions. Here, we report that this hybrid CG-equilibrium-AA-production protocol may artificially increase lipid density and decrease hydration in ion channel pores walled with transmembrane gaps. To understand the origin of this conundrum, we conducted replicas of CG, AA, and CG reverse-mapped AA simulations of the pore domain of the mechanosensitive Piezo1 channel in a nonconducting conformation. Lipid/water density analysis and free energy calculations reveal that the lack of initial pore hydration allows excessive lipids to enter the upper pore lumen through gaps between pore helices during CG simulation. Due to the mismatch between CG and AA lipid kinetics, these pore lipids remain trapped in the subsequent AA simulations, despite unfavorable binding free energy. We tested several CG equilibrium protocols and found that a protocol restraining the whole lipid produces pore hydration consistent with AA results, thus eliminating this artifact for further studies of lipid gating and protein-lipid interactions.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/7f/main.PMC9680783.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2022.100080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/14 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Multiscale molecular dynamics simulations using Martini coarse-grained (CG) and all-atom (AA) force fields are commonly used in membrane protein studies. In particular, reverse mapping an equilibrated CG model to an AA model offers an efficient way for preparing large membrane protein systems with complex protein shapes and lipid compositions. Here, we report that this hybrid CG-equilibrium-AA-production protocol may artificially increase lipid density and decrease hydration in ion channel pores walled with transmembrane gaps. To understand the origin of this conundrum, we conducted replicas of CG, AA, and CG reverse-mapped AA simulations of the pore domain of the mechanosensitive Piezo1 channel in a nonconducting conformation. Lipid/water density analysis and free energy calculations reveal that the lack of initial pore hydration allows excessive lipids to enter the upper pore lumen through gaps between pore helices during CG simulation. Due to the mismatch between CG and AA lipid kinetics, these pore lipids remain trapped in the subsequent AA simulations, despite unfavorable binding free energy. We tested several CG equilibrium protocols and found that a protocol restraining the whole lipid produces pore hydration consistent with AA results, thus eliminating this artifact for further studies of lipid gating and protein-lipid interactions.

Abstract Image

Abstract Image

Abstract Image

分子动力学平衡方案对通道孔附近蛋白质-脂质相互作用的重要性。
使用Martini粗粒(CG)和全原子(AA)力场的多尺度分子动力学模拟通常用于膜蛋白研究。特别地,将平衡的CG模型反向映射到AA模型为制备具有复杂蛋白质形状和脂质组成的大膜蛋白质系统提供了一种有效的方法。在这里,我们报道了这种混合CG平衡AA生产方案可能会人为地增加脂质密度,并减少有跨膜间隙的离子通道孔中的水合作用。为了理解这个难题的起源,我们对处于非导电构象的机械敏感Piezo1通道的孔域进行了CG、AA和CG反向映射AA模拟的复制品。脂质/水密度分析和自由能计算表明,在CG模拟过程中,由于缺乏初始孔隙水合作用,过量的脂质会通过孔隙螺旋之间的间隙进入上部孔腔。由于CG和AA脂质动力学之间的不匹配,这些孔脂质在随后的AA模拟中仍然被捕获,尽管不利的结合自由能。我们测试了几种CG平衡方案,发现抑制整个脂质的方案产生与AA结果一致的孔隙水合作用,从而消除了这种人为因素,用于进一步研究脂质门控和蛋白质-脂质相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信