B Yu, T J Katafiasz, S Nguyen, G Allegri, J Finlayson, E S Greenhalgh, S T Pinho, S Pimenta
{"title":"Characterizing and predicting the relationship between translaminar fracture toughness and pull-out length distributions under distinct temperatures.","authors":"B Yu, T J Katafiasz, S Nguyen, G Allegri, J Finlayson, E S Greenhalgh, S T Pinho, S Pimenta","doi":"10.1098/rsta.2021.0220","DOIUrl":null,"url":null,"abstract":"<p><p>The translaminar fracture toughness reflects the damage tolerance of a fibre-reinforced composite under longitudinal tension, which often governs the final failure of structures. One of the main energy-dissipation mechanisms that contributes to the translaminar toughness of composites is the fibre pull-out process. The present study aims to quantify and model the statistical distribution of fibre pull-out lengths formed on the translaminar fracture surface of composites, for the first time in the literature; this is done under different temperatures, so that the relationship between pull-out length distributions, micromechanical properties and the translaminar fracture toughness can be established. The fracture surfaces of cross-ply compact tension specimens tested under three different temperatures have been scanned through X-ray computed tomography to quantify the extent of fibre pull-out on the fracture surfaces; the distribution of pull-out lengths showed alarger average and larger variability with an increase in temperature, which also lead to an increase in translaminar fracture toughness. A similar trend has been captured by the proposed analytical model, which predicts the pull-out length distribution based on the analysis of quasi-fractal idealizations of the fracture surface, yielding an overall accuracy of more than 85%. This article is part of the theme issue 'Ageing and durability of composite materials'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210220"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The translaminar fracture toughness reflects the damage tolerance of a fibre-reinforced composite under longitudinal tension, which often governs the final failure of structures. One of the main energy-dissipation mechanisms that contributes to the translaminar toughness of composites is the fibre pull-out process. The present study aims to quantify and model the statistical distribution of fibre pull-out lengths formed on the translaminar fracture surface of composites, for the first time in the literature; this is done under different temperatures, so that the relationship between pull-out length distributions, micromechanical properties and the translaminar fracture toughness can be established. The fracture surfaces of cross-ply compact tension specimens tested under three different temperatures have been scanned through X-ray computed tomography to quantify the extent of fibre pull-out on the fracture surfaces; the distribution of pull-out lengths showed alarger average and larger variability with an increase in temperature, which also lead to an increase in translaminar fracture toughness. A similar trend has been captured by the proposed analytical model, which predicts the pull-out length distribution based on the analysis of quasi-fractal idealizations of the fracture surface, yielding an overall accuracy of more than 85%. This article is part of the theme issue 'Ageing and durability of composite materials'.