Exploring the impact of air pollution on COVID-19 admitted cases: Evidence from vector error correction model (VECM) approach in explaining the relationship between air pollutants towards COVID-19 cases in Kuwait.

IF 1.1 Q3 STATISTICS & PROBABILITY
Ahmad R Alsaber, Parul Setiya, Ahmad T Al-Sultan, Jiazhu Pan
{"title":"Exploring the impact of air pollution on COVID-19 admitted cases: Evidence from vector error correction model (VECM) approach in explaining the relationship between air pollutants towards COVID-19 cases in Kuwait.","authors":"Ahmad R Alsaber,&nbsp;Parul Setiya,&nbsp;Ahmad T Al-Sultan,&nbsp;Jiazhu Pan","doi":"10.1007/s42081-022-00165-z","DOIUrl":null,"url":null,"abstract":"<p><p>In urban areas, air pollution is one of the most serious global environmental issues. Using time-series approaches, this study looked into the validity of the relationship between air pollution and COVID-19 hospitalization. This time series research was carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality and stability test, and test on multivariate time-series using the Vector Error Correction Model (VECM) technique. The findings reveal that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has an effect on COVID-19 admitted cases via Granger-cause. The Granger causation test shows that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature and wind speed) influences and predicts the COVID-19 admitted cases. The findings suggest that sulfur dioxide ( <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> ), <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature, and wind speed induce an increase in COVID-19 admitted cases in the short term according to VECM analysis. The evidence of a positive long-run association between COVID-19 admitted cases and environmental air pollution might be shown in the cointegration test and the VECM. There is an affirmation that the usage of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has a significant impact on COVID-19-admitted cases' prediction and its explained about 24% of increasing COVID-19 admitted cases in Kuwait.</p>","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":" ","pages":"379-406"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244511/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42081-022-00165-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

In urban areas, air pollution is one of the most serious global environmental issues. Using time-series approaches, this study looked into the validity of the relationship between air pollution and COVID-19 hospitalization. This time series research was carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality and stability test, and test on multivariate time-series using the Vector Error Correction Model (VECM) technique. The findings reveal that the concentration rate of air pollutants ( O 3 , SO 2 , NO 2 , CO , and PM 10 ) has an effect on COVID-19 admitted cases via Granger-cause. The Granger causation test shows that the concentration rate of air pollutants ( O 3 , PM 10 , NO 2 , temperature and wind speed) influences and predicts the COVID-19 admitted cases. The findings suggest that sulfur dioxide ( SO 2 ), NO 2 , temperature, and wind speed induce an increase in COVID-19 admitted cases in the short term according to VECM analysis. The evidence of a positive long-run association between COVID-19 admitted cases and environmental air pollution might be shown in the cointegration test and the VECM. There is an affirmation that the usage of air pollutants ( O 3 , SO 2 , NO 2 , CO , and PM 10 ) has a significant impact on COVID-19-admitted cases' prediction and its explained about 24% of increasing COVID-19 admitted cases in Kuwait.

Abstract Image

Abstract Image

探索空气污染对COVID-19入院病例的影响:来自矢量误差修正模型(VECM)方法的证据,用于解释科威特空气污染物与COVID-19病例之间的关系。
在城市地区,空气污染是最严重的全球环境问题之一。本研究采用时间序列方法研究了空气污染与COVID-19住院之间关系的有效性。这项时间序列研究是在科威特进行的;平稳性检验、协整检验、格兰杰因果关系和稳定性检验,以及使用向量误差修正模型(VECM)技术对多变量时间序列进行检验。研究结果表明,空气污染物(o3、so2、no2、CO和PM 10)的浓度率对新冠肺炎住院病例有影响。格兰杰因果检验表明,大气污染物(o3、pm10、no2、温度和风速)浓度率对新冠肺炎住院病例有影响和预测作用。研究结果表明,根据VECM分析,二氧化硫(so2)、二氧化氮(NO 2)、温度和风速在短期内导致新冠肺炎住院病例增加。COVID-19入院病例与环境空气污染之间长期正相关的证据可能会在协整检验和VECM中显示。可以肯定的是,空气污染物(o3、so2、no2、CO和pm10)的使用对COVID-19入院病例的预测有重大影响,它解释了科威特COVID-19入院病例增加的24%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信