{"title":"Higgs effect without lunch.","authors":"C W Erickson, Rahim Leung, K S Stelle","doi":"10.1098/rsta.2021.0184","DOIUrl":null,"url":null,"abstract":"<p><p>Reduction in effective space-time dimensionality can occur in field-theory models more general than the widely studied dimensional reductions based on technically consistent truncations. Situations where wave function factors depend non-trivially on coordinates transverse to the effective lower dimension can give rise to unusual patterns of gauge symmetry breaking. Leading-order gauge modes can be left massless, but naturally occurring Stueckelberg modes can couple importantly at quartic order and higher, thus generating a 'covert' pattern of gauge symmetry breaking. Such a situation is illustrated in a five-dimensional model of scalar electrodynamics in which one spatial dimension is taken to be an interval with Dirichlet/Robin boundary conditions on opposing ends. The Stueckelberg mode remains in the theory as a propagating scalar degree of freedom from a dimensionally reduced perspective, but it is not 'eaten' in a mass-generating mechanism. At leading order, it also makes no contribution to the conserved energy; for this reason, it may be called a (non-ghost) 'phantom'. This simple model illuminates a mechanism which also has been found in gravitational braneworld scenarios. This article is part of the theme issue 'The future of mathematical cosmology, Volume 2'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210184"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251485/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Reduction in effective space-time dimensionality can occur in field-theory models more general than the widely studied dimensional reductions based on technically consistent truncations. Situations where wave function factors depend non-trivially on coordinates transverse to the effective lower dimension can give rise to unusual patterns of gauge symmetry breaking. Leading-order gauge modes can be left massless, but naturally occurring Stueckelberg modes can couple importantly at quartic order and higher, thus generating a 'covert' pattern of gauge symmetry breaking. Such a situation is illustrated in a five-dimensional model of scalar electrodynamics in which one spatial dimension is taken to be an interval with Dirichlet/Robin boundary conditions on opposing ends. The Stueckelberg mode remains in the theory as a propagating scalar degree of freedom from a dimensionally reduced perspective, but it is not 'eaten' in a mass-generating mechanism. At leading order, it also makes no contribution to the conserved energy; for this reason, it may be called a (non-ghost) 'phantom'. This simple model illuminates a mechanism which also has been found in gravitational braneworld scenarios. This article is part of the theme issue 'The future of mathematical cosmology, Volume 2'.