Haftom Weldekidan, Amar K. Mohanty* and Manjusri Misra,
{"title":"Upcycling of Plastic Wastes and Biomass for Sustainable Graphitic Carbon Production: A Critical Review","authors":"Haftom Weldekidan, Amar K. Mohanty* and Manjusri Misra, ","doi":"10.1021/acsenvironau.2c00029","DOIUrl":null,"url":null,"abstract":"<p >Upcycling of waste plastics diverts plastics from landfill, which helps in reducing greenhouse gas emissions. Graphitic carbon is an interesting material with a wide range of applications in electronics, energy storage, fuel cells, and even as advanced fillers for polymer composites. It is a very strong and highly conductive material consisting of weakly bound graphene layers arranged in a hexagonal structure. There are different ways of synthesizing graphitic carbons, of which the co-pyrolysis of biomass and plastic wastes is a promising approach for large-scale production. Highly graphitized carbon with surface areas in the range of 201 m<sup>2</sup>/g was produced from the co-pyrolysis of polyethylene and pinewood at 600 °C. Similarly, porous carbon having a superior discharge capacity (290 mAh/g) was developed from the co-pyrolysis of sugar cane and plastic polymers with catalysts. The addition of plastic wastes including polyethylene and high-density polyethylene to the pyrolysis of biomass tends to increase the surface area and improve the discharge capacity of the produced graphitic carbons. Likewise, temperature plays an important role in enhancing the carbon content and thereby the quality of the graphitic carbon during the co-pyrolysis process. The application of metal catalysts can reduce the graphitization temperature while at the same time improve the quality of the graphitic carbon by increasing the carbon contents. This work reports some typical graphitic carbon preparation methods from the co-pyrolysis of biomass and plastic wastes for the first time including thermochemical methods, exfoliation methods, template-based production methods, and salt-based methods. The factors affecting the graphitic char quality during the conversion processes are reviewed critically. Moreover, the current state-of-the-art characterization technologies such as Raman, scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy are discussed in detail, and finally, an overview on the applications, scalability, and future trends of graphitic-like carbons is highlighted.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/1c/vg2c00029.PMC9673229.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.2c00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 5
Abstract
Upcycling of waste plastics diverts plastics from landfill, which helps in reducing greenhouse gas emissions. Graphitic carbon is an interesting material with a wide range of applications in electronics, energy storage, fuel cells, and even as advanced fillers for polymer composites. It is a very strong and highly conductive material consisting of weakly bound graphene layers arranged in a hexagonal structure. There are different ways of synthesizing graphitic carbons, of which the co-pyrolysis of biomass and plastic wastes is a promising approach for large-scale production. Highly graphitized carbon with surface areas in the range of 201 m2/g was produced from the co-pyrolysis of polyethylene and pinewood at 600 °C. Similarly, porous carbon having a superior discharge capacity (290 mAh/g) was developed from the co-pyrolysis of sugar cane and plastic polymers with catalysts. The addition of plastic wastes including polyethylene and high-density polyethylene to the pyrolysis of biomass tends to increase the surface area and improve the discharge capacity of the produced graphitic carbons. Likewise, temperature plays an important role in enhancing the carbon content and thereby the quality of the graphitic carbon during the co-pyrolysis process. The application of metal catalysts can reduce the graphitization temperature while at the same time improve the quality of the graphitic carbon by increasing the carbon contents. This work reports some typical graphitic carbon preparation methods from the co-pyrolysis of biomass and plastic wastes for the first time including thermochemical methods, exfoliation methods, template-based production methods, and salt-based methods. The factors affecting the graphitic char quality during the conversion processes are reviewed critically. Moreover, the current state-of-the-art characterization technologies such as Raman, scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy are discussed in detail, and finally, an overview on the applications, scalability, and future trends of graphitic-like carbons is highlighted.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management