Pierre Masselot, Fateh Chebana, Céline Campagna, Éric Lavigne, Taha B M J Ouarda, Pierre Gosselin
{"title":"Constrained groupwise additive index models.","authors":"Pierre Masselot, Fateh Chebana, Céline Campagna, Éric Lavigne, Taha B M J Ouarda, Pierre Gosselin","doi":"10.1093/biostatistics/kxac023","DOIUrl":null,"url":null,"abstract":"<p><p>In environmental epidemiology, there is wide interest in creating and using comprehensive indices that can summarize information from different environmental exposures while retaining strong predictive power on a target health outcome. In this context, the present article proposes a model called the constrained groupwise additive index model (CGAIM) to create easy-to-interpret indices predictive of a response variable, from a potentially large list of variables. The CGAIM considers groups of predictors that naturally belong together to yield meaningful indices. It also allows the addition of linear constraints on both the index weights and the form of their relationship with the response variable to represent prior assumptions or operational requirements. We propose an efficient algorithm to estimate the CGAIM, along with index selection and inference procedures. A simulation study shows that the proposed algorithm has good estimation performances, with low bias and variance and is applicable in complex situations with many correlated predictors. It also demonstrates important sensitivity and specificity in index selection, but non-negligible coverage error on constructed confidence intervals. The CGAIM is then illustrated in the construction of heat indices in a health warning system context. We believe the CGAIM could become useful in a wide variety of situations, such as warning systems establishment, and multipollutant or exposome studies.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In environmental epidemiology, there is wide interest in creating and using comprehensive indices that can summarize information from different environmental exposures while retaining strong predictive power on a target health outcome. In this context, the present article proposes a model called the constrained groupwise additive index model (CGAIM) to create easy-to-interpret indices predictive of a response variable, from a potentially large list of variables. The CGAIM considers groups of predictors that naturally belong together to yield meaningful indices. It also allows the addition of linear constraints on both the index weights and the form of their relationship with the response variable to represent prior assumptions or operational requirements. We propose an efficient algorithm to estimate the CGAIM, along with index selection and inference procedures. A simulation study shows that the proposed algorithm has good estimation performances, with low bias and variance and is applicable in complex situations with many correlated predictors. It also demonstrates important sensitivity and specificity in index selection, but non-negligible coverage error on constructed confidence intervals. The CGAIM is then illustrated in the construction of heat indices in a health warning system context. We believe the CGAIM could become useful in a wide variety of situations, such as warning systems establishment, and multipollutant or exposome studies.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.