{"title":"MicroRNA153 induces apoptosis by targeting NFATc3 to improve vascular remodeling in pulmonary hypertension.","authors":"Ya Lu, Dongyan Li, Lina Shan","doi":"10.1080/10641963.2022.2140810","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The present study aimed to investigate the effect of microRNA153 (miRNA153) on pulmonary hypertension (PH).</p><p><strong>Methods: </strong>PH was induced by a single subcutaneous injection of sugen5416 (SU5416) combined with hypoxia exposure for 3 weeks (SuHx) in rats, while pulmonary arterial smooth muscle cells (PASMCs) obtained from rats were exposed to hypoxia to establish an <i>in vitro</i> model. Through observing the characteristic hemodynamic index in rats and by analyzing the physiological function, vascular remodeling and right ventricular hypertrophy were identified. The regulatory effects of miRNA153 on the nuclear factor of activated T cell isoform c3 (NFATc3) were measured by RT-qPCR, western blot, and immunofluorescence. Cell apoptosis was evaluated by flow cytometry.</p><p><strong>Results: </strong>The miRNA153 expression was reduced and unclear translation of NFATc3 was increased in both the <i>in vivo</i> and <i>in vitro</i> models of PH. <i>In vivo</i>, the pulmonary arterial pressure, right ventricle/(left ventricle + interventricular septum) (RV/(LV+S)), and media vascular thickness were increased in rats with PH; however, all these parameters were suppressed by prophylactic administration of miRNA153agomir. The upregulation of NFATc3 and downregulation of the potassium voltage-gated channel subfamily A member 5 (Kv1.5) were also reversed by transfection with miRNA153agomir. <i>In vitro</i>, miRNA153 increased the level of Kv1.5 in hypoxic PASMCs by targeting NFATc3 and inhibiting their proliferation and apoptosis resistance.</p><p><strong>Conclusion: </strong>Our results confirmed that the therapeutic administration of miRNA153 promotes apoptosis and inhibits the proliferation of PASMCs to ameliorate PH, and that the NFATc3/Kv1.5 channel pathway may be involved in this process.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"2140810"},"PeriodicalIF":16.4000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10641963.2022.2140810","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The present study aimed to investigate the effect of microRNA153 (miRNA153) on pulmonary hypertension (PH).
Methods: PH was induced by a single subcutaneous injection of sugen5416 (SU5416) combined with hypoxia exposure for 3 weeks (SuHx) in rats, while pulmonary arterial smooth muscle cells (PASMCs) obtained from rats were exposed to hypoxia to establish an in vitro model. Through observing the characteristic hemodynamic index in rats and by analyzing the physiological function, vascular remodeling and right ventricular hypertrophy were identified. The regulatory effects of miRNA153 on the nuclear factor of activated T cell isoform c3 (NFATc3) were measured by RT-qPCR, western blot, and immunofluorescence. Cell apoptosis was evaluated by flow cytometry.
Results: The miRNA153 expression was reduced and unclear translation of NFATc3 was increased in both the in vivo and in vitro models of PH. In vivo, the pulmonary arterial pressure, right ventricle/(left ventricle + interventricular septum) (RV/(LV+S)), and media vascular thickness were increased in rats with PH; however, all these parameters were suppressed by prophylactic administration of miRNA153agomir. The upregulation of NFATc3 and downregulation of the potassium voltage-gated channel subfamily A member 5 (Kv1.5) were also reversed by transfection with miRNA153agomir. In vitro, miRNA153 increased the level of Kv1.5 in hypoxic PASMCs by targeting NFATc3 and inhibiting their proliferation and apoptosis resistance.
Conclusion: Our results confirmed that the therapeutic administration of miRNA153 promotes apoptosis and inhibits the proliferation of PASMCs to ameliorate PH, and that the NFATc3/Kv1.5 channel pathway may be involved in this process.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.