Trajectory phase transitions in non-interacting systems: all-to-all dynamics and the random energy model.

Juan P Garrahan, Chokri Manai, Simone Warzel
{"title":"Trajectory phase transitions in non-interacting systems: all-to-all dynamics and the random energy model.","authors":"Juan P Garrahan,&nbsp;Chokri Manai,&nbsp;Simone Warzel","doi":"10.1098/rsta.2021.0415","DOIUrl":null,"url":null,"abstract":"<p><p>We study the fluctuations of time-additive random observables in the stochastic dynamics of a system of [Formula: see text] non-interacting Ising spins. We mainly consider the case of all-to-all dynamics where transitions are possible between any two spin configurations with uniform rates. We show that the cumulant generating function of the time-integral of a normally distributed quenched random function of configurations, i.e. the energy function of the random energy model (REM), has a phase transition in the large [Formula: see text] limit for trajectories of any time extent. We prove this by determining the exact limit of the scaled cumulant generating function. This is accomplished by connecting the dynamical problem to a spectral analysis of the all-to-all quantum REM. We also discuss finite [Formula: see text] corrections as observed in numerical simulations. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210415"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the fluctuations of time-additive random observables in the stochastic dynamics of a system of [Formula: see text] non-interacting Ising spins. We mainly consider the case of all-to-all dynamics where transitions are possible between any two spin configurations with uniform rates. We show that the cumulant generating function of the time-integral of a normally distributed quenched random function of configurations, i.e. the energy function of the random energy model (REM), has a phase transition in the large [Formula: see text] limit for trajectories of any time extent. We prove this by determining the exact limit of the scaled cumulant generating function. This is accomplished by connecting the dynamical problem to a spectral analysis of the all-to-all quantum REM. We also discuss finite [Formula: see text] corrections as observed in numerical simulations. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

非相互作用系统中的轨迹相变:全对全动力学和随机能量模型。
我们研究了[公式:见原文]非相互作用伊辛自旋系统的随机动力学中时间加性随机观测值的波动。我们主要考虑全对全动力学的情况,其中任意两个具有均匀速率的自旋构型之间都可能发生跃迁。我们证明了一个正态分布的淬灭随机函数的时间积分的累积生成函数,即随机能量模型(REM)的能量函数,在任何时间范围的轨迹的大[公式:见文本]极限中具有相变。我们通过确定缩放累积量生成函数的精确极限来证明这一点。这是通过将动力学问题与全对全量子REM的光谱分析联系起来完成的。我们还讨论了在数值模拟中观察到的有限修正[公式:见文本]。本文是主题“量子退火与计算:挑战与展望”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信