Statistics of the number of defects after quantum annealing in a thermal environment.

Sei Suzuki, Hiroki Oshiyama, Naokazu Shibata
{"title":"Statistics of the number of defects after quantum annealing in a thermal environment.","authors":"Sei Suzuki,&nbsp;Hiroki Oshiyama,&nbsp;Naokazu Shibata","doi":"10.1098/rsta.2021.0411","DOIUrl":null,"url":null,"abstract":"<p><p>We study the statistics of the kink number generated by quantum annealing in a one-dimensional transverse Ising model coupled to a bosonic thermal bath. Using the freezing ansatz for quantum annealing in the thermal environment, we show the relation between the ratio of the second to the first cumulant of the kink number distribution and the average kink density. The theoretical result is confirmed thoroughly by numerical simulation using the non-Markovian infinite time-evolving block decimation which we proposed recently. The simulation using D-Wave's quantum annealer is also discussed. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210411"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the statistics of the kink number generated by quantum annealing in a one-dimensional transverse Ising model coupled to a bosonic thermal bath. Using the freezing ansatz for quantum annealing in the thermal environment, we show the relation between the ratio of the second to the first cumulant of the kink number distribution and the average kink density. The theoretical result is confirmed thoroughly by numerical simulation using the non-Markovian infinite time-evolving block decimation which we proposed recently. The simulation using D-Wave's quantum annealer is also discussed. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

热环境中量子退火后缺陷数的统计。
研究了耦合于玻色子热浴的一维横向Ising模型中量子退火产生的扭结数的统计。利用热环境下量子退火的冻结分析,给出了扭结数分布的第二次累积量与第一次累积量之比与平均扭结密度的关系。用我们最近提出的非马尔可夫无限时变分块抽取进行数值模拟,彻底证实了理论结果。本文还讨论了利用D-Wave的量子退火器进行模拟的方法。本文是主题“量子退火与计算:挑战与展望”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信