Study on the role of naringin in attenuating Trimethylamine-N-Oxide-Induced human umbilical vein endothelial cell inflammation, oxidative stress, and endothelial dysfunction.
{"title":"Study on the role of naringin in attenuating Trimethylamine-N-Oxide-Induced human umbilical vein endothelial cell inflammation, oxidative stress, and endothelial dysfunction.","authors":"Hui Zhao, Jianping Zhao","doi":"10.4103/0304-4920.359796","DOIUrl":null,"url":null,"abstract":"<p><p>Trimethylamine-N-oxide (TMAO), a phospholipid metabolite, can modulate cholesterol synthesis and promote vascular inflammation and endothelial dysfunction, thereby increasing the risk of atherosclerosis (AS). Previously, it was found that naringin reduced damage to human umbilical vein endothelial cells (HUVECs) triggered by oxidized low-density lipoprotein. This article continues to explore the role and mechanism of naringin in protecting HUVECs from TMAO-induced damage. After the construction of TMAO-induced AS model in HUVECs, inflammation, oxidative stress, and endothelial function were examined by real-time quantitative polymerase chain reaction, Western blotting, nitric oxide (NO), reactive oxygen species (ROS), superoxide dismutase, and malondialdehyde (MDA) kits. Results showed that naringin pretreatment inhibited endothelial inflammation and oxidative stress, promoted NO release, and inhibited the degradation of Zona occludens-2, occludin, and vascular endothelial-cadherin, thereby restoring the functional and structural integrity of the endothelium. Furthermore, the addition of mitogen-activated protein kinase (MAPK) agonist demonstrated that the therapeutic effect of naringin was achieved through inactivating TMAO-stimulated MAPK signaling in HUVECs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0304-4920.359796","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Trimethylamine-N-oxide (TMAO), a phospholipid metabolite, can modulate cholesterol synthesis and promote vascular inflammation and endothelial dysfunction, thereby increasing the risk of atherosclerosis (AS). Previously, it was found that naringin reduced damage to human umbilical vein endothelial cells (HUVECs) triggered by oxidized low-density lipoprotein. This article continues to explore the role and mechanism of naringin in protecting HUVECs from TMAO-induced damage. After the construction of TMAO-induced AS model in HUVECs, inflammation, oxidative stress, and endothelial function were examined by real-time quantitative polymerase chain reaction, Western blotting, nitric oxide (NO), reactive oxygen species (ROS), superoxide dismutase, and malondialdehyde (MDA) kits. Results showed that naringin pretreatment inhibited endothelial inflammation and oxidative stress, promoted NO release, and inhibited the degradation of Zona occludens-2, occludin, and vascular endothelial-cadherin, thereby restoring the functional and structural integrity of the endothelium. Furthermore, the addition of mitogen-activated protein kinase (MAPK) agonist demonstrated that the therapeutic effect of naringin was achieved through inactivating TMAO-stimulated MAPK signaling in HUVECs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.