A Review in On-Body Compression Using Soft Actuators and Sensors: Applications, Mechanisms, and Challenges

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Alireza Golgouneh;Lucy E. Dunne
{"title":"A Review in On-Body Compression Using Soft Actuators and Sensors: Applications, Mechanisms, and Challenges","authors":"Alireza Golgouneh;Lucy E. Dunne","doi":"10.1109/RBME.2022.3220505","DOIUrl":null,"url":null,"abstract":"Body compression through a garment or inflatable pneumatic mechanism has various applications in aesthetic, athletic, robotics, haptics, astronautics, and especially medical fields for treatment of various disorders such as varicose veins, lymphedema, deep vein thrombosis, and orthostatic intolerance. Traditionally, compression has been done through under-sized (e.g. elastic) or size-adjustable (e.g. inflatable) compression garments. Such systems are designed to apply substantially uniform pressure on the body. However, due to reasons such as anatomical variations and body posture change, different levels of compression may be applied to the body. Further, a high level of discomfort and non-compliance is reported among patients due to donning difficulties. Therefore, there have been some efforts to make compression garments smart by employing advanced functional soft materials and actuators (such as Shape Memory Alloy (SMA), Shape Memory Polymer (SMP), Electroactive polymer (EAP), etc.) as well as soft force-pressure sensors so that the compression level could be controlled and regulated for each person or specific tasks. However, despite these advances, there are still challenges to accurately controlling the on-body compression level that are mainly due to the inherent characteristics of the soft actuators or sensors and the sophisticated human body conditions. In this paper, we will first investigate the soft actuators and sensors that have the potential to be used for on-body compression applications. Then, integrated soft sensing-actuation systems for interfacial compression purposes are studied. Finally, the challenges that might be associated with this work are introduced.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"166-179"},"PeriodicalIF":17.2000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9942311/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5

Abstract

Body compression through a garment or inflatable pneumatic mechanism has various applications in aesthetic, athletic, robotics, haptics, astronautics, and especially medical fields for treatment of various disorders such as varicose veins, lymphedema, deep vein thrombosis, and orthostatic intolerance. Traditionally, compression has been done through under-sized (e.g. elastic) or size-adjustable (e.g. inflatable) compression garments. Such systems are designed to apply substantially uniform pressure on the body. However, due to reasons such as anatomical variations and body posture change, different levels of compression may be applied to the body. Further, a high level of discomfort and non-compliance is reported among patients due to donning difficulties. Therefore, there have been some efforts to make compression garments smart by employing advanced functional soft materials and actuators (such as Shape Memory Alloy (SMA), Shape Memory Polymer (SMP), Electroactive polymer (EAP), etc.) as well as soft force-pressure sensors so that the compression level could be controlled and regulated for each person or specific tasks. However, despite these advances, there are still challenges to accurately controlling the on-body compression level that are mainly due to the inherent characteristics of the soft actuators or sensors and the sophisticated human body conditions. In this paper, we will first investigate the soft actuators and sensors that have the potential to be used for on-body compression applications. Then, integrated soft sensing-actuation systems for interfacial compression purposes are studied. Finally, the challenges that might be associated with this work are introduced.
使用软致动器和传感器进行人体压缩的综述:应用、机制和挑战》一书中的一篇评论。
通过服装或充气气动装置对人体进行压缩,在美学、运动、机器人、触觉、宇航,特别是医疗领域有多种应用,用于治疗各种疾病,如静脉曲张、淋巴水肿、深静脉血栓和正压性不耐受。传统上,压力治疗是通过尺寸不足(如弹性)或尺寸可调(如充气)的压力衣来实现的。这些系统的设计目的是对身体施加基本均匀的压力。然而,由于解剖结构的变化和身体姿势的改变等原因,可能会对身体施加不同程度的压力。此外,据报道,由于穿戴困难,患者会感到高度不适,并且不服从治疗。因此,人们一直在努力通过采用先进的功能性软材料和致动器(如形状记忆合金(SMA)、形状记忆聚合物(SMP)、电活性聚合物(EAP)等)以及软力-压力传感器来实现压力衣的智能化,从而可以根据每个人或特定任务来控制和调节压力水平。然而,尽管取得了这些进步,但要精确控制人体压缩水平仍面临挑战,这主要是由于软致动器或传感器的固有特性以及复杂的人体条件造成的。在本文中,我们将首先研究有可能用于人体压缩应用的软致动器和传感器。然后,研究用于界面压缩的集成软传感-执行系统。最后,我们将介绍这项工作可能面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信