Bo Fu , Xiangyi Zhang , Liyan Wang , Yonggong Ren , Dang N.H. Thanh
{"title":"Double enhanced residual network for biological image denoising","authors":"Bo Fu , Xiangyi Zhang , Liyan Wang , Yonggong Ren , Dang N.H. Thanh","doi":"10.1016/j.gep.2022.119270","DOIUrl":null,"url":null,"abstract":"<div><p>With the achievements of deep learning, applications of deep convolutional neural networks for the image denoising problem have been widely studied. However, these methods are typically limited by GPU in terms of network layers and other aspects. This paper proposes a multi-level network that can efficiently utilize GPU memory, named Double Enhanced Residual Network (DERNet), for biological-image denoising. The network consists of two sub-networks, and U-Net inspires the basic structure. For each sub-network, the encoder-decoder hierarchical structure is used for down-scaling and up-scaling feature maps so that GPU can yield large receptive fields. In the encoder process, the convolution layers are used for down-sampling to obtain image information, and residual blocks are superimposed for preliminary feature extraction. In the operation of the decoder, transposed convolution layers have the capability to up-sampling and combine with the Residual Dense Instance Normalization (RDIN) block that we propose, extract deep features and restore image details. Finally, both qualitative experiments and visual effects demonstrate the effectiveness of our proposed algorithm.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":"45 ","pages":"Article 119270"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X22000400","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
With the achievements of deep learning, applications of deep convolutional neural networks for the image denoising problem have been widely studied. However, these methods are typically limited by GPU in terms of network layers and other aspects. This paper proposes a multi-level network that can efficiently utilize GPU memory, named Double Enhanced Residual Network (DERNet), for biological-image denoising. The network consists of two sub-networks, and U-Net inspires the basic structure. For each sub-network, the encoder-decoder hierarchical structure is used for down-scaling and up-scaling feature maps so that GPU can yield large receptive fields. In the encoder process, the convolution layers are used for down-sampling to obtain image information, and residual blocks are superimposed for preliminary feature extraction. In the operation of the decoder, transposed convolution layers have the capability to up-sampling and combine with the Residual Dense Instance Normalization (RDIN) block that we propose, extract deep features and restore image details. Finally, both qualitative experiments and visual effects demonstrate the effectiveness of our proposed algorithm.
期刊介绍:
Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include:
-In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression
-Temporal studies of large gene sets during development
-Transgenic studies to study cell lineage in tissue formation