Sara Lombardi, Petri Partanen, Piergiorgio Francia, Italo Calamai, Rossella Deodati, Marco Luchini, Rosario Spina, Leonardo Bocchi
{"title":"Classifying sepsis from photoplethysmography.","authors":"Sara Lombardi, Petri Partanen, Piergiorgio Francia, Italo Calamai, Rossella Deodati, Marco Luchini, Rosario Spina, Leonardo Bocchi","doi":"10.1007/s13755-022-00199-3","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a life-threatening organ dysfunction. It is caused by a dysregulated immune response to an infection and is one of the leading causes of death in the intensive care unit (ICU). Early detection and treatment of sepsis can increase the survival rate of patients. The use of devices such as the photoplethysmograph could allow the early evaluation in addition to continuous monitoring of septic patients. The aim of this study was to verify the possibility of detecting sepsis in patients from whom the photoplethysmographic signal was acquired via a pulse oximeter. In this work, we developed a deep learning-based model for sepsis identification. The model takes a single input, the photoplethysmographic signal acquired by pulse oximeter, and performs a binary classification between septic and nonseptic samples. To develop the method, we used MIMIC-III database, which contains data from ICU patients. Specifically, the selected dataset includes 85 septic subjects and 101 control subjects. The PPG signals acquired from these patients were segmented, processed and used as input for the developed model with the aim of identifying sepsis. The proposed method achieved an accuracy of 76.37% with a sensitivity of 70.95% and a specificity of 81.04% on the test set. As regards the ROC curve, the Area Under Curve reached a value of 0.842. The results of this study indicate how the plethysmographic signal can be used as a warning sign for the early detection of sepsis with the aim of reducing the time for diagnosis and therapeutic intervention. Furthermore, the proposed method is suitable for integration in continuous patient monitoring.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":" ","pages":"30"},"PeriodicalIF":4.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622958/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00199-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Sepsis is a life-threatening organ dysfunction. It is caused by a dysregulated immune response to an infection and is one of the leading causes of death in the intensive care unit (ICU). Early detection and treatment of sepsis can increase the survival rate of patients. The use of devices such as the photoplethysmograph could allow the early evaluation in addition to continuous monitoring of septic patients. The aim of this study was to verify the possibility of detecting sepsis in patients from whom the photoplethysmographic signal was acquired via a pulse oximeter. In this work, we developed a deep learning-based model for sepsis identification. The model takes a single input, the photoplethysmographic signal acquired by pulse oximeter, and performs a binary classification between septic and nonseptic samples. To develop the method, we used MIMIC-III database, which contains data from ICU patients. Specifically, the selected dataset includes 85 septic subjects and 101 control subjects. The PPG signals acquired from these patients were segmented, processed and used as input for the developed model with the aim of identifying sepsis. The proposed method achieved an accuracy of 76.37% with a sensitivity of 70.95% and a specificity of 81.04% on the test set. As regards the ROC curve, the Area Under Curve reached a value of 0.842. The results of this study indicate how the plethysmographic signal can be used as a warning sign for the early detection of sepsis with the aim of reducing the time for diagnosis and therapeutic intervention. Furthermore, the proposed method is suitable for integration in continuous patient monitoring.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.