Similarity Analysis for Medical Images Using Color and Texture Histogramss.

Current Health Sciences Journal Pub Date : 2022-04-01 Epub Date: 2022-06-30 DOI:10.12865/CHSJ.48.02.09
Mihaela Ionescu, Adina Dorina Glodeanu, Iulia Roxana Marinescu, Alin Gabriel Ionescu, Cristin Constantin Vere
{"title":"Similarity Analysis for Medical Images Using Color and Texture Histogramss.","authors":"Mihaela Ionescu,&nbsp;Adina Dorina Glodeanu,&nbsp;Iulia Roxana Marinescu,&nbsp;Alin Gabriel Ionescu,&nbsp;Cristin Constantin Vere","doi":"10.12865/CHSJ.48.02.09","DOIUrl":null,"url":null,"abstract":"<p><p>Medical databases usually contain a significant volume of images, therefore search engines based on low-level features frequently used to retrieve similar images are necessary for a fast operation. Color, texture, and shape are the most common features used to characterize an image, however extracting the proper features for image retrievals in a similar manner with the human cognition remains a constant challenge. These algorithms work by sorting the images based on a similarity index that defines how different two or more images are, and histograms are one of the most employed methods for image comparison. In this paper, we have extended the concept of image database to the set of frames acquired following wireless capsule endoscopy (from a unique patient). Then, we have used color and texture histograms to identify very similar images (considered duplicates) and removed one of them for each pair of two successive frames. The volume reduction represented an average of 20% from the initial data set, only by removing frames with very similar informational content.</p>","PeriodicalId":10938,"journal":{"name":"Current Health Sciences Journal","volume":"48 2","pages":"196-202"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590363/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Health Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12865/CHSJ.48.02.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Medical databases usually contain a significant volume of images, therefore search engines based on low-level features frequently used to retrieve similar images are necessary for a fast operation. Color, texture, and shape are the most common features used to characterize an image, however extracting the proper features for image retrievals in a similar manner with the human cognition remains a constant challenge. These algorithms work by sorting the images based on a similarity index that defines how different two or more images are, and histograms are one of the most employed methods for image comparison. In this paper, we have extended the concept of image database to the set of frames acquired following wireless capsule endoscopy (from a unique patient). Then, we have used color and texture histograms to identify very similar images (considered duplicates) and removed one of them for each pair of two successive frames. The volume reduction represented an average of 20% from the initial data set, only by removing frames with very similar informational content.

Abstract Image

Abstract Image

Abstract Image

基于颜色和纹理直方图的医学图像相似性分析。
医学数据库通常包含大量图像,因此基于低级特征的搜索引擎经常用于检索类似图像,以实现快速操作是必要的。颜色、纹理和形状是用来表征图像的最常见特征,然而,以类似于人类认知的方式提取图像检索的适当特征仍然是一个持续的挑战。这些算法的工作原理是根据相似性指数对图像进行排序,相似性指数定义了两个或多个图像的不同程度,直方图是图像比较中最常用的方法之一。在本文中,我们将图像数据库的概念扩展到无线胶囊内窥镜(来自一个独特的病人)后获得的一组帧。然后,我们使用颜色和纹理直方图来识别非常相似的图像(被认为是重复的),并为每一对连续的两帧删除其中的一个。仅通过删除具有非常相似信息内容的帧,体积比初始数据集平均减少了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信