{"title":"Iron overload impairs renal function and is associated with vascular calcification in rat aorta","authors":"Yanqiu Song, Ning Yang, Hailong Si, Ting Liu, Hongyu Wang, Hua Geng, Qin Qin, Zhigang Guo","doi":"10.1007/s10534-022-00449-7","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular calcification (VC) has been associated with a risk of cardiovascular diseases. Iron may play a critical role in progressive VC. Therefore, we investigated the effects of iron overload on the aorta of rats. A rat model of iron overload was established by intraperitoneal injection of Iron-Dextran. The levels of iron, calcium, and ALP activity were detected. Von Kossa staining and Perl’s staining were conducted. The expression of iron metabolism-related and calcification related factors were examined in the aortic tissue of rats. The results showed serum and aortic tissue iron were increased induced by iron overload and excessive iron induced hepatic and renal damage. In iron overload rats, the expression of divalent metal transporter 1 (DMT1) and hepcidin were higher, but ferroportin1 (FPN1) was lower. Von Kossa staining demonstrated calcium deposition in the aorta of iron overload rats. The calcium content and ALP activity in serum and aortic tissue were increased and iron level in aortic tissue highly correlated with calcium content and ALP activity. The expressions of the osteogenic markers were increased while a decrease of Alpha-smooth muscle actin (α-SMA) in the aortic tissue of iron overload rats. IL-24 was increased during the calcification process induced by iron. Overall, we demonstrated excessive iron accumulation in the aortic tissue and induced organs damage. The iron metabolism-related factors were significantly changed during iron overload. Moreover, we found that iron overload leads to calcium deposition in aorta, playing a key role in the pathological process of VC by mediating osteoblast differentiation factors.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"35 6","pages":"1325 - 1339"},"PeriodicalIF":4.1000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10534-022-00449-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-022-00449-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Vascular calcification (VC) has been associated with a risk of cardiovascular diseases. Iron may play a critical role in progressive VC. Therefore, we investigated the effects of iron overload on the aorta of rats. A rat model of iron overload was established by intraperitoneal injection of Iron-Dextran. The levels of iron, calcium, and ALP activity were detected. Von Kossa staining and Perl’s staining were conducted. The expression of iron metabolism-related and calcification related factors were examined in the aortic tissue of rats. The results showed serum and aortic tissue iron were increased induced by iron overload and excessive iron induced hepatic and renal damage. In iron overload rats, the expression of divalent metal transporter 1 (DMT1) and hepcidin were higher, but ferroportin1 (FPN1) was lower. Von Kossa staining demonstrated calcium deposition in the aorta of iron overload rats. The calcium content and ALP activity in serum and aortic tissue were increased and iron level in aortic tissue highly correlated with calcium content and ALP activity. The expressions of the osteogenic markers were increased while a decrease of Alpha-smooth muscle actin (α-SMA) in the aortic tissue of iron overload rats. IL-24 was increased during the calcification process induced by iron. Overall, we demonstrated excessive iron accumulation in the aortic tissue and induced organs damage. The iron metabolism-related factors were significantly changed during iron overload. Moreover, we found that iron overload leads to calcium deposition in aorta, playing a key role in the pathological process of VC by mediating osteoblast differentiation factors.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.