Wenxun Dong, Yanjun Zhang, Liping Zhang, Wei Ma, Lan Luo
{"title":"What will the water quality of the Yangtze River be in the future?","authors":"Wenxun Dong, Yanjun Zhang, Liping Zhang, Wei Ma, Lan Luo","doi":"10.1016/j.scitotenv.2022.159714","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term prediction of water quality is important for water pollution control planning and water resource management, but it has received little attention. In this study, the water quality trend in the Yangtze River is found to stabilize at most monitoring stations under environmental protection activities. Based on the physical mechanism and stochastic theory, a novel river water quality prediction model combining pollution source decomposition (including local point, local nonpoint and upstream sources) and time series decomposition (including trend, seasonal and residential components) is developed. The observed water quality data from 76 monitoring stations in the Yangtze River, including permanganate index (COD<sub>Mn</sub>) and total phosphorus (TP), are used to drive this model to make long-term water quality predictions. The results show that this model has an acceptable accuracy. In the future, the concentration of COD<sub>Mn</sub> will meet the water quality targets at most stations in the Yangtze River, but the concentration of TP will not be able to meet the water quality target at 28.5 % of the stations. Furthermore, the prediction value of COD<sub>Mn</sub> is 62.2 % lower than the target on average. However, the prediction value of TP is only 24.4 % lower than the target on average, and it will exceed the water target by >50 % at some stations. This model has the potential to be widely used for long-term water quality prediction in the future.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"159714"},"PeriodicalIF":5.4000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2022.159714","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
Abstract
The long-term prediction of water quality is important for water pollution control planning and water resource management, but it has received little attention. In this study, the water quality trend in the Yangtze River is found to stabilize at most monitoring stations under environmental protection activities. Based on the physical mechanism and stochastic theory, a novel river water quality prediction model combining pollution source decomposition (including local point, local nonpoint and upstream sources) and time series decomposition (including trend, seasonal and residential components) is developed. The observed water quality data from 76 monitoring stations in the Yangtze River, including permanganate index (CODMn) and total phosphorus (TP), are used to drive this model to make long-term water quality predictions. The results show that this model has an acceptable accuracy. In the future, the concentration of CODMn will meet the water quality targets at most stations in the Yangtze River, but the concentration of TP will not be able to meet the water quality target at 28.5 % of the stations. Furthermore, the prediction value of CODMn is 62.2 % lower than the target on average. However, the prediction value of TP is only 24.4 % lower than the target on average, and it will exceed the water target by >50 % at some stations. This model has the potential to be widely used for long-term water quality prediction in the future.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture