{"title":"The bond valence model as a prospective approach: examination of the crystal structures of copper chalcogenides with Cu bond valence excess.","authors":"Yves Moëlo, Aurelian Florin Popa, Vincent Dubost","doi":"10.1107/S2052520622006138","DOIUrl":null,"url":null,"abstract":"<p><p>Bond valence analysis has been applied to various copper chalcogenides with copper valence excess, i.e. where the formal valence of copper exceeds 1. This approach always reveals a copper bond valence excess relative to the unit value, correlated to an equivalent ligand bond valence deficit. In stoichiometric chalcogenides, this corresponds to one ligand electron in excess per formula unit relative to the valence equilibrium considering only Cu<sup>I</sup>. This ligand electron in excess is 50/50 shared between all or part of the Cu-atom positions, and all or part of the ligand-atom positions. In Cu<sub>3</sub>Se<sub>2</sub>, only one of the two Cu positions is involved in this sharing. It would indicate a special type of multicentre bonding (`one-electron co-operative bonding'). Calculated and ideal structural formulae according to this bond valence distribution are presented. At the crystal structure scale, Cu-ligand bonds implying the single electron in excess form one-, two- or three-dimensional subnetworks. Bond valence distribution according to two two-dimensional subnets is detailed in covellite, CuS. This bond valence description is a formal crystal-chemical representation of the metallic conductivity of holes (mixing between Cu 3d bands and ligand p bands), according to published electronic band structures. Bond valence analysis is a useful and very simple prospective approach in the search for new compounds with targeted specific physical properties.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520622006138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bond valence analysis has been applied to various copper chalcogenides with copper valence excess, i.e. where the formal valence of copper exceeds 1. This approach always reveals a copper bond valence excess relative to the unit value, correlated to an equivalent ligand bond valence deficit. In stoichiometric chalcogenides, this corresponds to one ligand electron in excess per formula unit relative to the valence equilibrium considering only CuI. This ligand electron in excess is 50/50 shared between all or part of the Cu-atom positions, and all or part of the ligand-atom positions. In Cu3Se2, only one of the two Cu positions is involved in this sharing. It would indicate a special type of multicentre bonding (`one-electron co-operative bonding'). Calculated and ideal structural formulae according to this bond valence distribution are presented. At the crystal structure scale, Cu-ligand bonds implying the single electron in excess form one-, two- or three-dimensional subnetworks. Bond valence distribution according to two two-dimensional subnets is detailed in covellite, CuS. This bond valence description is a formal crystal-chemical representation of the metallic conductivity of holes (mixing between Cu 3d bands and ligand p bands), according to published electronic band structures. Bond valence analysis is a useful and very simple prospective approach in the search for new compounds with targeted specific physical properties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.