The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress.

IF 4.3 3区 生物学
Human Cell Pub Date : 2022-09-01 Epub Date: 2022-06-29 DOI:10.1007/s13577-022-00738-w
Yidan Chen, Ying Su, Feng Wang
{"title":"The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress.","authors":"Yidan Chen,&nbsp;Ying Su,&nbsp;Feng Wang","doi":"10.1007/s13577-022-00738-w","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1307-1322"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00738-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.

青光眼中的Piezo1离子通道:机械应力的新视角。
病理性眼压升高引起的青光眼视神经损伤是不可逆的,其病程往往难以控制。这类眼病与生物力学密切相关,近几十年来人们对青光眼发病机制与力学刺激的相关性进行了研究。非选择性阳离子通道Piezo1是已知最重要的机械应力传感器,是一种在各种细胞类型中广泛表达的跨膜蛋白。在整个眼睛中都检测到Piezo1,并且证实了Piezo1与青光眼之间的密切关系。青光眼的病理改变发生在眼睛的前段和后段,Piezo1是否在这些变化中发挥作用及其如何发挥作用是研究人员非常感兴趣的问题。阐明Piezo1在非眼组织中的作用机制以及类似的机械激活离子通道在青光眼中的作用,将为进一步的研究提供适当的基础。本文从一个新的角度,详细介绍了Piezo1在青光眼中的作用,包括相关的问题和假设,仍存在的挑战的研究方向和机制相关的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Cell
Human Cell 生物-细胞生物学
CiteScore
6.60
自引率
2.30%
发文量
176
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信