Iyabosola B. Oronti;Ernesto Iadanza;Leandro Pecchia
{"title":"Hypertension Diagnosis and Management in Africa Using Mobile Phones: A Scoping Review","authors":"Iyabosola B. Oronti;Ernesto Iadanza;Leandro Pecchia","doi":"10.1109/RBME.2022.3186828","DOIUrl":null,"url":null,"abstract":"Target 3.4 of the third Sustainable Development Goal (SDG) of the United Nations (UN) General Assembly proposes to reduce premature mortality from non-communicable diseases (NCDs) by one-third. Epidemiological data presented by the World Health Organization (WHO) in 2016 show that out of a total of 57 million deaths worldwide, approximately 41 million deaths occurred due to NCDs, with 78% of such deaths occurring in low-and-middle-income countries (LMICs). The majority of investigations on NCDs agree that the leading risk factor for mortality worldwide is hypertension. Over 75% of the world's mobile phone subscriptions reside in LMICs, hence making the mobile phone particularly relevant to mHealth deployment in Africa. This study is aimed at determining the scope of the literature available on hypertension diagnosis and management in Africa, with particular emphasis on determining the feasibility, acceptability and effectiveness of interventions based on the use of mobile phones. The bulk of the evidence considered overwhelmingly shows that SMS technology is yet the most used medium for executing interventions in Africa. Consequently, the need to define novel and superior ways of providing effective and low-cost monitoring, diagnosis, and management of hypertension-related NCDs delivered through artificial intelligence and machine learning techniques is clear.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"197-211"},"PeriodicalIF":17.2000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9809807","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9809807/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Target 3.4 of the third Sustainable Development Goal (SDG) of the United Nations (UN) General Assembly proposes to reduce premature mortality from non-communicable diseases (NCDs) by one-third. Epidemiological data presented by the World Health Organization (WHO) in 2016 show that out of a total of 57 million deaths worldwide, approximately 41 million deaths occurred due to NCDs, with 78% of such deaths occurring in low-and-middle-income countries (LMICs). The majority of investigations on NCDs agree that the leading risk factor for mortality worldwide is hypertension. Over 75% of the world's mobile phone subscriptions reside in LMICs, hence making the mobile phone particularly relevant to mHealth deployment in Africa. This study is aimed at determining the scope of the literature available on hypertension diagnosis and management in Africa, with particular emphasis on determining the feasibility, acceptability and effectiveness of interventions based on the use of mobile phones. The bulk of the evidence considered overwhelmingly shows that SMS technology is yet the most used medium for executing interventions in Africa. Consequently, the need to define novel and superior ways of providing effective and low-cost monitoring, diagnosis, and management of hypertension-related NCDs delivered through artificial intelligence and machine learning techniques is clear.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.