Jing Jin, Fanyi Li, Caihong Fan, Yu Wu, Chunhui He
{"title":"Elevated mir-145-5p is associated with skeletal muscle dysfunction and triggers apoptotic cell death in C2C12 myotubes.","authors":"Jing Jin, Fanyi Li, Caihong Fan, Yu Wu, Chunhui He","doi":"10.1007/s10974-022-09624-2","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD), and the molecular mechanisms regarding to the pathogenesis of this disease have not been elucidated. In this study, a novel miR-145-5p was significantly upregulated in the serum collected from patients with COPD-associated muscle atrophy, in contrast with the normal participants. Then, we evidenced that silencing of miR-145-5p suppressed cell death and elongated cell survival during cell culture process. Consistently, upregulation of miR-145-5p induced cell apoptosis and restrain cell viability in the C2C12 cells, suggesting that miR-145-5p contributes to cell death. Further experiments evidenced that miR-145-5p decreased the expression levels of phosphorylated PI3K (p-PI3K), Akt (p-Akt) and mTOR (p-mTOR) to inactivate the PI3K/Akt/mTOR pathway, and this pathway was also reactivated by miR-145-5p ablation. Finally, we proved that the protective effects of miR-145-5p ablation were abrogated by co-treating cells with PI3K inhibitor LY294002. Taken together, we concluded that miR-145-5p promoted cell death to facilitate muscle dysfunctions via inactivating the PI3K/Akt/mTOR pathway.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":"43 3","pages":"135-145"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-022-09624-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Skeletal muscle dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD), and the molecular mechanisms regarding to the pathogenesis of this disease have not been elucidated. In this study, a novel miR-145-5p was significantly upregulated in the serum collected from patients with COPD-associated muscle atrophy, in contrast with the normal participants. Then, we evidenced that silencing of miR-145-5p suppressed cell death and elongated cell survival during cell culture process. Consistently, upregulation of miR-145-5p induced cell apoptosis and restrain cell viability in the C2C12 cells, suggesting that miR-145-5p contributes to cell death. Further experiments evidenced that miR-145-5p decreased the expression levels of phosphorylated PI3K (p-PI3K), Akt (p-Akt) and mTOR (p-mTOR) to inactivate the PI3K/Akt/mTOR pathway, and this pathway was also reactivated by miR-145-5p ablation. Finally, we proved that the protective effects of miR-145-5p ablation were abrogated by co-treating cells with PI3K inhibitor LY294002. Taken together, we concluded that miR-145-5p promoted cell death to facilitate muscle dysfunctions via inactivating the PI3K/Akt/mTOR pathway.
期刊介绍:
The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.