{"title":"Bias correction via outcome reassignment for cross-sectional data with binary disease outcome.","authors":"Mei-Cheng Wang, Yuxin Zhu","doi":"10.1007/s10985-022-09559-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-sectionally sampled data with binary disease outcome are commonly analyzed in observational studies to identify the relationship between covariates and disease outcome. A cross-sectional population is defined as a population of living individuals at the sampling or observational time. It is generally understood that binary disease outcome from cross-sectional data contains less information than longitudinally collected time-to-event data, but there is insufficient understanding as to whether bias can possibly exist in cross-sectional data and how the bias is related to the population risk of interest. Wang and Yang (2021) presented the complexity and bias in cross-sectional data with binary disease outcome with detailed analytical explorations into the data structure. As the distribution of the cross-sectional binary outcome is quite different from the population risk distribution, bias can arise when using cross-sectional data analysis to draw inference for population risk. In this paper we argue that the commonly adopted age-specific risk probability is biased for the estimation of population risk and propose an outcome reassignment approach which reassigns a portion of the observed binary outcome, 0 or 1, to the other disease category. A sign test and a semiparametric pseudo-likelihood method are developed for analyzing cross-sectional data using the OR approach. Simulations and an analysis based on Alzheimer's Disease data are presented to illustrate the proposed methods.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09559-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-sectionally sampled data with binary disease outcome are commonly analyzed in observational studies to identify the relationship between covariates and disease outcome. A cross-sectional population is defined as a population of living individuals at the sampling or observational time. It is generally understood that binary disease outcome from cross-sectional data contains less information than longitudinally collected time-to-event data, but there is insufficient understanding as to whether bias can possibly exist in cross-sectional data and how the bias is related to the population risk of interest. Wang and Yang (2021) presented the complexity and bias in cross-sectional data with binary disease outcome with detailed analytical explorations into the data structure. As the distribution of the cross-sectional binary outcome is quite different from the population risk distribution, bias can arise when using cross-sectional data analysis to draw inference for population risk. In this paper we argue that the commonly adopted age-specific risk probability is biased for the estimation of population risk and propose an outcome reassignment approach which reassigns a portion of the observed binary outcome, 0 or 1, to the other disease category. A sign test and a semiparametric pseudo-likelihood method are developed for analyzing cross-sectional data using the OR approach. Simulations and an analysis based on Alzheimer's Disease data are presented to illustrate the proposed methods.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.