{"title":"Bias correction via outcome reassignment for cross-sectional data with binary disease outcome.","authors":"Mei-Cheng Wang, Yuxin Zhu","doi":"10.1007/s10985-022-09559-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-sectionally sampled data with binary disease outcome are commonly analyzed in observational studies to identify the relationship between covariates and disease outcome. A cross-sectional population is defined as a population of living individuals at the sampling or observational time. It is generally understood that binary disease outcome from cross-sectional data contains less information than longitudinally collected time-to-event data, but there is insufficient understanding as to whether bias can possibly exist in cross-sectional data and how the bias is related to the population risk of interest. Wang and Yang (2021) presented the complexity and bias in cross-sectional data with binary disease outcome with detailed analytical explorations into the data structure. As the distribution of the cross-sectional binary outcome is quite different from the population risk distribution, bias can arise when using cross-sectional data analysis to draw inference for population risk. In this paper we argue that the commonly adopted age-specific risk probability is biased for the estimation of population risk and propose an outcome reassignment approach which reassigns a portion of the observed binary outcome, 0 or 1, to the other disease category. A sign test and a semiparametric pseudo-likelihood method are developed for analyzing cross-sectional data using the OR approach. Simulations and an analysis based on Alzheimer's Disease data are presented to illustrate the proposed methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"659-674"},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09559-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-sectionally sampled data with binary disease outcome are commonly analyzed in observational studies to identify the relationship between covariates and disease outcome. A cross-sectional population is defined as a population of living individuals at the sampling or observational time. It is generally understood that binary disease outcome from cross-sectional data contains less information than longitudinally collected time-to-event data, but there is insufficient understanding as to whether bias can possibly exist in cross-sectional data and how the bias is related to the population risk of interest. Wang and Yang (2021) presented the complexity and bias in cross-sectional data with binary disease outcome with detailed analytical explorations into the data structure. As the distribution of the cross-sectional binary outcome is quite different from the population risk distribution, bias can arise when using cross-sectional data analysis to draw inference for population risk. In this paper we argue that the commonly adopted age-specific risk probability is biased for the estimation of population risk and propose an outcome reassignment approach which reassigns a portion of the observed binary outcome, 0 or 1, to the other disease category. A sign test and a semiparametric pseudo-likelihood method are developed for analyzing cross-sectional data using the OR approach. Simulations and an analysis based on Alzheimer's Disease data are presented to illustrate the proposed methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.