{"title":"Electrical Stimulation for Wound Healing: Opportunities for E-Textiles","authors":"Tom Greig;Russel Torah;Kai Yang","doi":"10.1109/RBME.2022.3210598","DOIUrl":null,"url":null,"abstract":"Ulcers and chronic wounds are a large and expensive problem, costing billions of pounds a year and affecting millions of people. Electrical stimulation has been known to have a positive effect on wound healing since the 1960s and this has been confirmed in numerous studies, reducing the time to heal, and the incidence of adverse events such as infections. However, because each study used different parameters for the treatment, inclusion criteria and metrics for quantifying the success, it is currently hard to combine them statistically and gain a true picture of its efficacy. As such, electrical stimulation has not been universally adopted as a recommended treatment for various types of wound. This paper summarises the biological basis for electrical simulation treatment and reviews the clinical evidence for its effectiveness. Notable is the lack of research focused on the electrodes used to deliver electrostimulation treatment. However, a significant amount of work has been conducted on electrodes for other medical applications in the field of e-textiles. This e-textile work is reviewed with a focus on its potential in electrostimulation and proposals are made for future developments to improve future studies and applications for wound healing via electrical stimulation.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"264-279"},"PeriodicalIF":17.2000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9905965/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ulcers and chronic wounds are a large and expensive problem, costing billions of pounds a year and affecting millions of people. Electrical stimulation has been known to have a positive effect on wound healing since the 1960s and this has been confirmed in numerous studies, reducing the time to heal, and the incidence of adverse events such as infections. However, because each study used different parameters for the treatment, inclusion criteria and metrics for quantifying the success, it is currently hard to combine them statistically and gain a true picture of its efficacy. As such, electrical stimulation has not been universally adopted as a recommended treatment for various types of wound. This paper summarises the biological basis for electrical simulation treatment and reviews the clinical evidence for its effectiveness. Notable is the lack of research focused on the electrodes used to deliver electrostimulation treatment. However, a significant amount of work has been conducted on electrodes for other medical applications in the field of e-textiles. This e-textile work is reviewed with a focus on its potential in electrostimulation and proposals are made for future developments to improve future studies and applications for wound healing via electrical stimulation.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.