Inertial Wave Beam Path in a Non-uniformly Rotating Cylinder with Sloping Ends

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Stanislav Subbotin, Mariya Shiryaeva
{"title":"Inertial Wave Beam Path in a Non-uniformly Rotating Cylinder with Sloping Ends","authors":"Stanislav Subbotin,&nbsp;Mariya Shiryaeva","doi":"10.1007/s12217-023-10054-z","DOIUrl":null,"url":null,"abstract":"<div><p>The features of the inertial wave beam propagation in a librating cylindrical cavity with symmetrically inclined end-walls are experimentally studied. The geometry provides the existence of two flow regimes – inertial wave attractor and the case of symmetric beam reflection that is like the closed periodic orbit in a rotating spherical shell. Despite the visual similarity, the nature of the regimes is different. The first is due to the geometric focusing of the beams into the limit cycle after a series of reflections from sloping ends, and the second with the symmetry wave path for a given frequency and cavity geometry. Although the geometry of the problem is three-dimensional, these regimes are almost two-dimensional: the closed wave trajectory is trapping near the plane of the direction of the slope gradient of the ends. Also, we study the scaling laws for the width and amplitude of the oscillating shear layers in the axial section. At large amplitudes of the librational forcing, the global azimuthal vorticity grows in a quadratic manner, which indicates the development of a nonlinear regime of inertial waves. Fourier analysis shows that a spectrum, besides the fundamental frequency, contains two sets of closely spaced subharmonic frequencies that satisfy the triadic resonance condition.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10054-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The features of the inertial wave beam propagation in a librating cylindrical cavity with symmetrically inclined end-walls are experimentally studied. The geometry provides the existence of two flow regimes – inertial wave attractor and the case of symmetric beam reflection that is like the closed periodic orbit in a rotating spherical shell. Despite the visual similarity, the nature of the regimes is different. The first is due to the geometric focusing of the beams into the limit cycle after a series of reflections from sloping ends, and the second with the symmetry wave path for a given frequency and cavity geometry. Although the geometry of the problem is three-dimensional, these regimes are almost two-dimensional: the closed wave trajectory is trapping near the plane of the direction of the slope gradient of the ends. Also, we study the scaling laws for the width and amplitude of the oscillating shear layers in the axial section. At large amplitudes of the librational forcing, the global azimuthal vorticity grows in a quadratic manner, which indicates the development of a nonlinear regime of inertial waves. Fourier analysis shows that a spectrum, besides the fundamental frequency, contains two sets of closely spaced subharmonic frequencies that satisfy the triadic resonance condition.

Abstract Image

端部倾斜非均匀旋转圆柱体中的惯性波束路径
实验研究了惯性波束在端壁对称倾斜的振动圆柱腔中的传播特性。该几何图形提供了两种流动状态的存在-惯性波吸引子和对称光束反射的情况,这种情况类似于旋转球壳中的闭合周期轨道。尽管外表相似,但两国政权的性质却不同。第一种是由于光束经过一系列从倾斜端反射后的几何聚焦进入极限环,第二种是由于给定频率和腔几何形状的对称波路。虽然问题的几何形状是三维的,但这些区域几乎是二维的:封闭的波轨迹被困在靠近两端斜坡梯度方向的平面附近。研究了轴向截面上振荡剪切层宽度和振幅的标度规律。在大振幅的振动强迫下,全球的方位涡量以二次型的方式增长,这表明惯性波的非线性状态的发展。傅里叶分析表明,频谱除基频外,还包含两组紧密间隔的满足三元共振条件的次谐波频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信