Bingnan Wang, Lirong Wang, Xiaolin Liu, Jiamiao Zhu, Rong Hu, Anjun Qin* and Ben Zhong Tang*,
{"title":"AIE-Active Antibiotic Photosensitizer with Enhanced Fluorescence in Bacteria Infected Cells and Better Therapy Effect toward Drug-Resistant Bacteria","authors":"Bingnan Wang, Lirong Wang, Xiaolin Liu, Jiamiao Zhu, Rong Hu, Anjun Qin* and Ben Zhong Tang*, ","doi":"10.1021/acsabm.2c00681","DOIUrl":null,"url":null,"abstract":"<p >It is well-known that bacterial infections will induce a variety of diseases in the clinic. In particular, the emergence of drug-resistant bacteria has increased the threat to human health. The development of multiple modes of therapy will effectively fight against drug-resistant bacterial infections. In this work, we covalently attached an AIE photosensitizer to the antibiotic of moxifloxacin hydrochloride (MXF-HCl) and synthesized an antibiotic derivative, MXF-R, with pharmacological activity and photodynamic activation. In infected cells, MXF-R showed enhanced fluorescence after it specifically binds to bacteria; thus, in situ visualization of the bacteria was realized. Notably, through chemo- and photodynamic therapy, MXF-R exhibited better antibacterial activity than its parent antibiotic in rapid sterilization, and it achieved effective killing for moxifloxacin resistant bacteria. In addition, MXF-R shows a broad-spectrum antibacterial effect and could be used in the recovery therapy of infected wounds in mice, demonstrative of a significant therapeutic effect and good biological safety. Thus, as a promising multifunctional antibacterial agent, MXF-R will have tremendous potential in in situ visualization study and killing of drug-resistant bacteria. This work provides an innovative strategy for solving critical disease through the combination of materials and biomedical sciences.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"5 10","pages":"4955–4964"},"PeriodicalIF":4.7000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.2c00681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
It is well-known that bacterial infections will induce a variety of diseases in the clinic. In particular, the emergence of drug-resistant bacteria has increased the threat to human health. The development of multiple modes of therapy will effectively fight against drug-resistant bacterial infections. In this work, we covalently attached an AIE photosensitizer to the antibiotic of moxifloxacin hydrochloride (MXF-HCl) and synthesized an antibiotic derivative, MXF-R, with pharmacological activity and photodynamic activation. In infected cells, MXF-R showed enhanced fluorescence after it specifically binds to bacteria; thus, in situ visualization of the bacteria was realized. Notably, through chemo- and photodynamic therapy, MXF-R exhibited better antibacterial activity than its parent antibiotic in rapid sterilization, and it achieved effective killing for moxifloxacin resistant bacteria. In addition, MXF-R shows a broad-spectrum antibacterial effect and could be used in the recovery therapy of infected wounds in mice, demonstrative of a significant therapeutic effect and good biological safety. Thus, as a promising multifunctional antibacterial agent, MXF-R will have tremendous potential in in situ visualization study and killing of drug-resistant bacteria. This work provides an innovative strategy for solving critical disease through the combination of materials and biomedical sciences.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.