{"title":"Predicting mosquito repellents for clothing application from molecular fingerprint-based artificial neural network SAR models.","authors":"J Devillers, V Sartor, H Devillers","doi":"10.1080/1062936X.2022.2124014","DOIUrl":null,"url":null,"abstract":"<p><p>Spraying repellents on clothing limits toxicity and allergy problems that can occur when the repellents are directly applied to skin. This also allows the use of higher doses to ensure longer lasting effects. As the number of repellents available on the market is limited, it is necessary to propose new ones, especially by using in silico methods that reduce costs and time. In this context SAR models were built from a dataset of 2027 chemicals for which repellent activity on clothing was measured against <i>Aedes aegypti</i>. The interest of using either the ECFP or MACCS fingerprints as input neurons of a three-layer perceptron was evaluated. Transformation of MACCS bit strings into disjunctive tables led to interesting results. Models obtained with both types of fingerprints were compared to a model including physicochemical and topological descriptors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"729-751"},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2022.2124014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Spraying repellents on clothing limits toxicity and allergy problems that can occur when the repellents are directly applied to skin. This also allows the use of higher doses to ensure longer lasting effects. As the number of repellents available on the market is limited, it is necessary to propose new ones, especially by using in silico methods that reduce costs and time. In this context SAR models were built from a dataset of 2027 chemicals for which repellent activity on clothing was measured against Aedes aegypti. The interest of using either the ECFP or MACCS fingerprints as input neurons of a three-layer perceptron was evaluated. Transformation of MACCS bit strings into disjunctive tables led to interesting results. Models obtained with both types of fingerprints were compared to a model including physicochemical and topological descriptors.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.