Convolutional Neural Networks-Based Framework for Early Identification of Dementia Using MRI of Brain Asymmetry.

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
International Journal of Neural Systems Pub Date : 2022-12-01 Epub Date: 2022-09-15 DOI:10.1142/S0129065722500538
Nitsa J Herzog, George D Magoulas
{"title":"Convolutional Neural Networks-Based Framework for Early Identification of Dementia Using MRI of Brain Asymmetry.","authors":"Nitsa J Herzog,&nbsp;George D Magoulas","doi":"10.1142/S0129065722500538","DOIUrl":null,"url":null,"abstract":"<p><p>Computer-aided diagnosis of health problems and pathological conditions has become a substantial part of medical, biomedical, and computer science research. This paper focuses on the diagnosis of early and progressive dementia, building on the potential of deep learning (DL) models. The proposed computational framework exploits a magnetic resonance imaging (MRI) brain asymmetry biomarker, which has been associated with early dementia, and employs DL architectures for MRI image classification. Identification of early dementia is accomplished by an eight-layered convolutional neural network (CNN) as well as transfer learning of pretrained CNNs from ImageNet. Different instantiations of the proposed CNN architecture are tested. These are equipped with Softmax, support vector machine (SVM), linear discriminant (LD), or [Formula: see text] -nearest neighbor (KNN) classification layers, assembled as a separate classification module, which are attached to the core CNN architecture. The initial imaging data were obtained from the MRI directory of the Alzheimer's disease neuroimaging initiative 3 (ADNI3) database. The independent testing dataset was created using image preprocessing and segmentation algorithms applied to unseen patients' imaging data. The proposed approach demonstrates a 90.12% accuracy in distinguishing patients who are cognitively normal subjects from those who have Alzheimer's disease (AD), and an 86.40% accuracy in detecting early mild cognitive impairment (EMCI).</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500538","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Computer-aided diagnosis of health problems and pathological conditions has become a substantial part of medical, biomedical, and computer science research. This paper focuses on the diagnosis of early and progressive dementia, building on the potential of deep learning (DL) models. The proposed computational framework exploits a magnetic resonance imaging (MRI) brain asymmetry biomarker, which has been associated with early dementia, and employs DL architectures for MRI image classification. Identification of early dementia is accomplished by an eight-layered convolutional neural network (CNN) as well as transfer learning of pretrained CNNs from ImageNet. Different instantiations of the proposed CNN architecture are tested. These are equipped with Softmax, support vector machine (SVM), linear discriminant (LD), or [Formula: see text] -nearest neighbor (KNN) classification layers, assembled as a separate classification module, which are attached to the core CNN architecture. The initial imaging data were obtained from the MRI directory of the Alzheimer's disease neuroimaging initiative 3 (ADNI3) database. The independent testing dataset was created using image preprocessing and segmentation algorithms applied to unseen patients' imaging data. The proposed approach demonstrates a 90.12% accuracy in distinguishing patients who are cognitively normal subjects from those who have Alzheimer's disease (AD), and an 86.40% accuracy in detecting early mild cognitive impairment (EMCI).

基于卷积神经网络的脑不对称MRI早期识别痴呆框架。
健康问题和病理状况的计算机辅助诊断已经成为医学、生物医学和计算机科学研究的重要组成部分。本文的重点是早期和进行性痴呆的诊断,建立在深度学习(DL)模型的潜力。提出的计算框架利用与早期痴呆相关的磁共振成像(MRI)脑不对称生物标志物,并采用DL架构进行MRI图像分类。早期痴呆的识别是通过八层卷积神经网络(CNN)和ImageNet预训练CNN的迁移学习来完成的。对所提出的CNN架构的不同实例进行了测试。这些都配备了Softmax,支持向量机(SVM),线性判别(LD),或[公式:见文本]-最近邻(KNN)分类层,组装成一个单独的分类模块,附着在核心CNN架构上。初始成像数据来自阿尔茨海默病神经成像倡议3 (ADNI3)数据库的MRI目录。独立测试数据集采用未见患者影像数据的图像预处理和分割算法创建。该方法在区分认知正常患者和阿尔茨海默病(AD)患者方面的准确率为90.12%,在检测早期轻度认知障碍(EMCI)方面的准确率为86.40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信