{"title":"High pressure homogenization applied to fruit juices: Effects on microbial inactivation and on maintenance of bioactive components.","authors":"Mariah Almeida Lima, Amauri Rosenthal","doi":"10.1177/10820132221124196","DOIUrl":null,"url":null,"abstract":"<p><p>High-pressure homogenization (HPH) is a non-thermal technology widely studied to replace, partially or in total, the conventional thermal preservation processes used in the food industry, thus minimizing undesirable changes in the nutritional and sensory characteristics of liquid products. The main effect of HPH is the size reduction of dispersed particles thus affecting physical stability of the products, despite also inactivating microorganisms, preserving bioactive compounds, and maintaining sensory characteristics. During the process, the fluid is driven under high-pressure through a micrometric gap inside the valve. Phenomena including cavitation, shear and turbulence are responsible for the changes in the fluid. From this perspective, the present paper reviews the effects of HPH on the inactivation of microorganisms and preservation of bioactive compounds of fruit juices treated with this technology. The juice matrices reported were apple, apricot, banana, blackberry, carrot, kiwifruit, mandarin, mango, orange, peach, pomegranate, rosehip, strawberry and tomato. The paper elucidates the potential application of HPH to fruit juice processing aiming at producing safe products with high nutritional and sensory quality.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"857-870"},"PeriodicalIF":17.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132221124196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-pressure homogenization (HPH) is a non-thermal technology widely studied to replace, partially or in total, the conventional thermal preservation processes used in the food industry, thus minimizing undesirable changes in the nutritional and sensory characteristics of liquid products. The main effect of HPH is the size reduction of dispersed particles thus affecting physical stability of the products, despite also inactivating microorganisms, preserving bioactive compounds, and maintaining sensory characteristics. During the process, the fluid is driven under high-pressure through a micrometric gap inside the valve. Phenomena including cavitation, shear and turbulence are responsible for the changes in the fluid. From this perspective, the present paper reviews the effects of HPH on the inactivation of microorganisms and preservation of bioactive compounds of fruit juices treated with this technology. The juice matrices reported were apple, apricot, banana, blackberry, carrot, kiwifruit, mandarin, mango, orange, peach, pomegranate, rosehip, strawberry and tomato. The paper elucidates the potential application of HPH to fruit juice processing aiming at producing safe products with high nutritional and sensory quality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.