{"title":"Computational analysis of protein-protein interaction network of differentially expressed genes in benign prostatic hyperplasia.","authors":"Ruchi Sachdeva, Navneet Kaur, Paras Kapoor, Pooja Singla, Nidhi Thakur, Sakshi Singhmar","doi":"10.22099/mbrc.2022.43721.1746","DOIUrl":null,"url":null,"abstract":"<p><p>Benign prostatic hyperplasia (BPH) is a commonly occurring disease in aging men. It involves cellular proliferation of stromal and glandular tissues leading to prostate enlargement. Current drug therapies show several adverse effects such as sexual dysfunctions and cardiovascular side effects. Therefore, there is a need to develop more effective medical treatment for BPH. In this regard, we aimed to identify genes which play a critical role in BPH. We have obtained the dataset of differentially expressed genes (DEGs) of BPH from NCBI GEO. DEGs were investigated in the context of their protein-protein interactions (PPI). Hub genes i.e. genes associated with BPH were scrutinized based on the topological parameters of the PPI network. These were analyzed for functional annotations, pathway enrichment analysis and transcriptional regulation. In total, 38 hub genes were identified. Hub genes such as transcription factor activator protein-1 and adiponectin were found to play key roles in cellular proliferation and inflammation. Another gene peroxisome proliferator activated receptor gamma was suggested to cause obesity, a common comorbidity of BPH. Moreover, our results indicated an important role of transforming growth factor-beta (TGF-β) signaling and smooth muscle cell proliferation which may be responsible for prostate overgrowth and associated lower urinary tract symptoms frequently encountered in BPH patients. Zinc finger protein Snai1 was the most prominent transcription factor regulating the expression of hub genes that participate in TGF-β signaling. Overall, our study has revealed significant hub genes that can be employed as drug targets to develop potential therapeutic interventions to treat BPH.</p>","PeriodicalId":19025,"journal":{"name":"Molecular Biology Research Communications","volume":"11 2","pages":"85-96"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22099/mbrc.2022.43721.1746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Benign prostatic hyperplasia (BPH) is a commonly occurring disease in aging men. It involves cellular proliferation of stromal and glandular tissues leading to prostate enlargement. Current drug therapies show several adverse effects such as sexual dysfunctions and cardiovascular side effects. Therefore, there is a need to develop more effective medical treatment for BPH. In this regard, we aimed to identify genes which play a critical role in BPH. We have obtained the dataset of differentially expressed genes (DEGs) of BPH from NCBI GEO. DEGs were investigated in the context of their protein-protein interactions (PPI). Hub genes i.e. genes associated with BPH were scrutinized based on the topological parameters of the PPI network. These were analyzed for functional annotations, pathway enrichment analysis and transcriptional regulation. In total, 38 hub genes were identified. Hub genes such as transcription factor activator protein-1 and adiponectin were found to play key roles in cellular proliferation and inflammation. Another gene peroxisome proliferator activated receptor gamma was suggested to cause obesity, a common comorbidity of BPH. Moreover, our results indicated an important role of transforming growth factor-beta (TGF-β) signaling and smooth muscle cell proliferation which may be responsible for prostate overgrowth and associated lower urinary tract symptoms frequently encountered in BPH patients. Zinc finger protein Snai1 was the most prominent transcription factor regulating the expression of hub genes that participate in TGF-β signaling. Overall, our study has revealed significant hub genes that can be employed as drug targets to develop potential therapeutic interventions to treat BPH.
期刊介绍:
“Molecular Biology Research Communications” (MBRC) is an international journal of Molecular Biology. It is published quarterly by Shiraz University (Iran). The MBRC is a fully peer-reviewed journal. The journal welcomes submission of Original articles, Short communications, Invited review articles, and Letters to the Editor which meets the general criteria of significance and scientific excellence in all fields of “Molecular Biology”.