{"title":"Role of Post-translational Modification of Silent Mating Type Information Regulator 2 Homolog 1 in Cancer and Other Disorders.","authors":"Yeon-Hwa Lee, Su-Jung Kim, Young-Joon Surh","doi":"10.15430/JCP.2022.27.3.157","DOIUrl":null,"url":null,"abstract":"<p><p>Silent mating type information regulator 2 homolog 1 (SIRT1), an NAD<sup>+</sup>-dependent histone/protein deacetylase, has multifarious physiological roles in development, metabolic regulation, and stress response. Thus, its abnormal expression or malfunction is implicated in pathogenesis of various diseases. SIRT1 undergoes post-translational modifications, including phosphorylation, oxidation/reduction, carbonylation, nitrosylation, glycosylation, ubiquitination/deubiquitination, SUMOylation etc. which can modulate its catalytic activity, stability, subcellular localization, and also binding affinity for substrate proteins. This short review highlights the regulation of SIRT1 post-translational modifications and their pathophysiologic implications.</p>","PeriodicalId":15120,"journal":{"name":"Journal of Cancer Prevention","volume":"27 3","pages":"157-169"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5a/4a/jcp-27-3-157.PMC9537581.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15430/JCP.2022.27.3.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silent mating type information regulator 2 homolog 1 (SIRT1), an NAD+-dependent histone/protein deacetylase, has multifarious physiological roles in development, metabolic regulation, and stress response. Thus, its abnormal expression or malfunction is implicated in pathogenesis of various diseases. SIRT1 undergoes post-translational modifications, including phosphorylation, oxidation/reduction, carbonylation, nitrosylation, glycosylation, ubiquitination/deubiquitination, SUMOylation etc. which can modulate its catalytic activity, stability, subcellular localization, and also binding affinity for substrate proteins. This short review highlights the regulation of SIRT1 post-translational modifications and their pathophysiologic implications.