Kushal Sharma, Kwon Woo Kang, Young-Woo Seo, Elisabeth Glowatzki, Eunyoung Yi
{"title":"Low-voltage Activating K<sup>+</sup> Channels in Cochlear Afferent Nerve Fiber Dendrites.","authors":"Kushal Sharma, Kwon Woo Kang, Young-Woo Seo, Elisabeth Glowatzki, Eunyoung Yi","doi":"10.5607/en22013","DOIUrl":null,"url":null,"abstract":"<p><p>Cochlear afferent nerve fibers (ANF) are the first neurons in the ascending auditory pathway. We investigated the low-voltage activating K<sup>+</sup> channels expressed in ANF dendrites using isolated rat cochlear segments. Whole cell patch clamp recordings were made from the dendritic terminals of ANFs. Outward currents activating at membrane potentials as low as -64 mV were observed in all dendrites studied. These currents were inhibited by 4-aminopyridine (4-AP), a blocker known to preferentially inhibit low-voltage activating K<sup>+</sup> currents (I<sub>KL</sub>) in CNS auditory neurons and spiral ganglion neurons. When the dendritic I<sub>KL</sub> was blocked by 4-AP, the EPSP decay time was significantly prolonged, suggesting that dendritic I<sub>KL</sub> speeds up the decay of EPSPs and likely modulates action potentials of ANFs. To reveal molecular subtype of dendritic I<sub>KL</sub>, α-dendrotoxin (α-DTX), a selective inhibitor for K<sub>v</sub>1.1, K<sub>v</sub>1.2, and K<sub>v</sub>1.6 containing channels, was tested. α-DTX inhibited 23±9% of dendritic I<sub>KL</sub>. To identify the α-DTXsensitive and α-DTX-insensitive components of I<sub>KL</sub>, immunofluorescence labeling was performed. Strong K<sub>v</sub>1.1- and K<sub>v</sub>1.2-immunoreactivity was found at unmyelinated dendritic segments, nodes of Ranvier, and cell bodies of most ANFs. A small fraction of ANF dendrites showed K<sub>v</sub>7.2- immunoreactivity. These data suggest that dendritic I<sub>KL</sub> is conducted through K<sub>v</sub>1.1and K<sub>v</sub>1.2 channels, with a minor contribution from K<sub>v</sub>7.2 and other as yet unidentified channels.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"31 4","pages":"243-259"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/d4/en-31-4-243.PMC9471414.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en22013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
Cochlear afferent nerve fibers (ANF) are the first neurons in the ascending auditory pathway. We investigated the low-voltage activating K+ channels expressed in ANF dendrites using isolated rat cochlear segments. Whole cell patch clamp recordings were made from the dendritic terminals of ANFs. Outward currents activating at membrane potentials as low as -64 mV were observed in all dendrites studied. These currents were inhibited by 4-aminopyridine (4-AP), a blocker known to preferentially inhibit low-voltage activating K+ currents (IKL) in CNS auditory neurons and spiral ganglion neurons. When the dendritic IKL was blocked by 4-AP, the EPSP decay time was significantly prolonged, suggesting that dendritic IKL speeds up the decay of EPSPs and likely modulates action potentials of ANFs. To reveal molecular subtype of dendritic IKL, α-dendrotoxin (α-DTX), a selective inhibitor for Kv1.1, Kv1.2, and Kv1.6 containing channels, was tested. α-DTX inhibited 23±9% of dendritic IKL. To identify the α-DTXsensitive and α-DTX-insensitive components of IKL, immunofluorescence labeling was performed. Strong Kv1.1- and Kv1.2-immunoreactivity was found at unmyelinated dendritic segments, nodes of Ranvier, and cell bodies of most ANFs. A small fraction of ANF dendrites showed Kv7.2- immunoreactivity. These data suggest that dendritic IKL is conducted through Kv1.1and Kv1.2 channels, with a minor contribution from Kv7.2 and other as yet unidentified channels.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.