Supplementation of porcine in vitro maturation medium with FGF2, LIF, and IGF1 enhances cytoplasmic maturation in prepubertal gilts oocytes and improves embryo quality.
María Serrano Albal, Giuseppe Silvestri, Lucas G Kiazim, Lucy M Vining, Louisa J Zak, Grant A Walling, Alexandra M Haigh, Simon C Harvey, Katie E Harvey, Darren K Griffin
{"title":"Supplementation of porcine <i>in vitro</i> maturation medium with FGF2, LIF, and IGF1 enhances cytoplasmic maturation in prepubertal gilts oocytes and improves embryo quality.","authors":"María Serrano Albal, Giuseppe Silvestri, Lucas G Kiazim, Lucy M Vining, Louisa J Zak, Grant A Walling, Alexandra M Haigh, Simon C Harvey, Katie E Harvey, Darren K Griffin","doi":"10.1017/S0967199422000284","DOIUrl":null,"url":null,"abstract":"<p><p>In porcine <i>in vitro</i> production (IVP) systems, the use of oocytes derived from prepubertal gilts, whilst being commercially attractive, remains challenging due to their poor developmental competence following <i>in vitro</i> maturation (IVM). Follicular fluid contains important growth factors and plays a key role during oocyte maturation; therefore, it is a common supplementation for porcine IVM medium. However, follicular fluid contains many poorly characterized components, is batch variable, and its use raises biosecurity concerns. In an effort to design a defined IVM system, growth factors such as cytokines have been previously tested. These include leukaemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF1), the combination of which is termed 'FLI'. Here, using abattoir-derived oocytes in a well established porcine IVP system, we compared follicular fluid and FLI supplementation during both IVM and embryo culture to test the hypothesis that FLI can substitute for follicular fluid without compromising oocyte nuclear and cytoplasmic maturation. We demonstrate that in oocytes derived from prepubertal gilts, FLI supplementation enhances oocyte meiotic maturation and has a positive effect on the quality and developmental competence of embryos. Moreover, for the first time, we studied the effects of follicular fluid and FLI combined showing no synergistic effects.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0967199422000284","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In porcine in vitro production (IVP) systems, the use of oocytes derived from prepubertal gilts, whilst being commercially attractive, remains challenging due to their poor developmental competence following in vitro maturation (IVM). Follicular fluid contains important growth factors and plays a key role during oocyte maturation; therefore, it is a common supplementation for porcine IVM medium. However, follicular fluid contains many poorly characterized components, is batch variable, and its use raises biosecurity concerns. In an effort to design a defined IVM system, growth factors such as cytokines have been previously tested. These include leukaemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF1), the combination of which is termed 'FLI'. Here, using abattoir-derived oocytes in a well established porcine IVP system, we compared follicular fluid and FLI supplementation during both IVM and embryo culture to test the hypothesis that FLI can substitute for follicular fluid without compromising oocyte nuclear and cytoplasmic maturation. We demonstrate that in oocytes derived from prepubertal gilts, FLI supplementation enhances oocyte meiotic maturation and has a positive effect on the quality and developmental competence of embryos. Moreover, for the first time, we studied the effects of follicular fluid and FLI combined showing no synergistic effects.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.