The Influence of the BDNF Val66Met Polymorphism on Mechanisms of Semantic Priming: Analyses with Drift-Diffusion Models of Masked and Unmasked Priming.
Alexander Berger, Simon Sanwald, Christian Montag, Markus Kiefer
{"title":"The Influence of the BDNF Val66Met Polymorphism on Mechanisms of Semantic Priming: Analyses with Drift-Diffusion Models of Masked and Unmasked Priming.","authors":"Alexander Berger, Simon Sanwald, Christian Montag, Markus Kiefer","doi":"10.5709/acp-0318-z","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic and strategic processes in semantic priming can be investigated with masked and unmasked priming tasks. Unmasked priming is thought to enable strategic processes due to the conscious processing of primes, while masked priming exclusively depends on automatic processes due to the invisibility of the prime. Besides task properties, interindividual differences may alter priming effects. In a recent study, masked and unmasked priming based on mean response time (RT) and error rate (ER) differed as a function of the BDNF Val66Met polymorphism (Sanwald et al., 2020). The BDNF Val66Met polymorphism is related to the integrity of several cognitive executive functions and might thus influence the magnitude of priming. In the present study, we reanalyzed this data with drift-diffusion models. Drift-diffusion models conjointly analyze single trial RT and ER data and serve as a framework to elucidate cognitive processes underlying priming. Masked and unmasked priming effects were observed for the drift rates <i>ν</i>, presumably reflecting semantic preactivation. Priming effects on nondecision time <i>t0</i> were especially pronounced in unmasked priming, suggesting additional conscious processes to be involved in the <i>t0</i> modulation. Priming effects on the decision thresholds <i>a</i> may reflect a speed-accuracy tradeoff. Considering the BDNF Val66Met polymorphism, we found lowered drift rates and decision thresholds for Met allele carriers, possibly reflecting a superficial processing style in Met allele carriers. The present study shows that differences in cognitive tasks between genetic groups can be elucidated using drift-diffusion modeling.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"70-87"},"PeriodicalIF":16.4000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0f/43/acp-17-1-320.PMC9396249.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.5709/acp-0318-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic and strategic processes in semantic priming can be investigated with masked and unmasked priming tasks. Unmasked priming is thought to enable strategic processes due to the conscious processing of primes, while masked priming exclusively depends on automatic processes due to the invisibility of the prime. Besides task properties, interindividual differences may alter priming effects. In a recent study, masked and unmasked priming based on mean response time (RT) and error rate (ER) differed as a function of the BDNF Val66Met polymorphism (Sanwald et al., 2020). The BDNF Val66Met polymorphism is related to the integrity of several cognitive executive functions and might thus influence the magnitude of priming. In the present study, we reanalyzed this data with drift-diffusion models. Drift-diffusion models conjointly analyze single trial RT and ER data and serve as a framework to elucidate cognitive processes underlying priming. Masked and unmasked priming effects were observed for the drift rates ν, presumably reflecting semantic preactivation. Priming effects on nondecision time t0 were especially pronounced in unmasked priming, suggesting additional conscious processes to be involved in the t0 modulation. Priming effects on the decision thresholds a may reflect a speed-accuracy tradeoff. Considering the BDNF Val66Met polymorphism, we found lowered drift rates and decision thresholds for Met allele carriers, possibly reflecting a superficial processing style in Met allele carriers. The present study shows that differences in cognitive tasks between genetic groups can be elucidated using drift-diffusion modeling.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.