{"title":"Synthesis, crystal structure, and PTPs inhibition activity of a {N, S}-coordinated paddle wheel platinum(II) complex","authors":"Shufang Wu, Shaodong Li, Xinyu Liu, Yan-Bo Wu, Liping Lu, Caixia Yuan","doi":"10.1007/s11243-023-00534-x","DOIUrl":null,"url":null,"abstract":"<div><p>A dinuclear platinum(II) complex, [Pt<sub>2</sub>(μ-L)<sub>3</sub>(μ-HL)]·Cl·3H<sub>2</sub>O·DMSO (<b>1</b>, HL = 4-Amino-5-pyridin-4-yl-2,4-dihydro-[1,2,4]triazole-3-thione, DMSO = dimethyl sulfoxide), has been synthesized and characterized. The X-ray crystal structural analysis shows that the complex crystallizes in the triclinic, space group <span>\\(P\\overline{1}\\)</span>. Each Pt(II) atom is four-coordinated with two N atoms and two S atoms from triazole ligands. The two platinum centers of the complex formed a paddle wheel motif with four N atoms and four S atoms from four chelating triazole ligands as bridges. The complex forms a 3D network structure by intermolecular hydrogen bonds and C-H…<i>π</i> interactions. The inhibition of complex <b>1</b> was evaluated against protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It has been found that the complex can both inhibit PTP1B and TCPTP with IC<sub>50</sub> values of 11 and 17 μM, respectively. By comparing with the other platinum complexes, we found that complex <b>1</b> exhibits more effective inhibition to PTP1B and TCPTP than the reported paddle wheel dinuclear platinum(II) complexes and weaker inhibition against the two protein tyrosine phosphatases (PTPs) than the mononuclear platinum(II) complex with Schiff base ligand. It is suggested that both the modification and change of the ligand and the spatial structure of the complex will influence their inhibitory ability against PTPs.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11243-023-00534-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00534-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A dinuclear platinum(II) complex, [Pt2(μ-L)3(μ-HL)]·Cl·3H2O·DMSO (1, HL = 4-Amino-5-pyridin-4-yl-2,4-dihydro-[1,2,4]triazole-3-thione, DMSO = dimethyl sulfoxide), has been synthesized and characterized. The X-ray crystal structural analysis shows that the complex crystallizes in the triclinic, space group \(P\overline{1}\). Each Pt(II) atom is four-coordinated with two N atoms and two S atoms from triazole ligands. The two platinum centers of the complex formed a paddle wheel motif with four N atoms and four S atoms from four chelating triazole ligands as bridges. The complex forms a 3D network structure by intermolecular hydrogen bonds and C-H…π interactions. The inhibition of complex 1 was evaluated against protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It has been found that the complex can both inhibit PTP1B and TCPTP with IC50 values of 11 and 17 μM, respectively. By comparing with the other platinum complexes, we found that complex 1 exhibits more effective inhibition to PTP1B and TCPTP than the reported paddle wheel dinuclear platinum(II) complexes and weaker inhibition against the two protein tyrosine phosphatases (PTPs) than the mononuclear platinum(II) complex with Schiff base ligand. It is suggested that both the modification and change of the ligand and the spatial structure of the complex will influence their inhibitory ability against PTPs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.