{"title":"Gain-loss-duplication models for copy number evolution on a phylogeny: Exact algorithms for computing the likelihood and its gradient","authors":"Miklós Csűrös","doi":"10.1016/j.tpb.2022.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Gene gain-loss-duplication models are commonly based on continuous-time birth–death processes. Employed in a phylogenetic context, such models have been increasingly popular in studies of gene content evolution across multiple genomes. While the applications are becoming more varied and demanding, bioinformatics methods for probabilistic inference on copy numbers (or integer-valued evolutionary characters, in general) are scarce.</p><p>We describe a flexible probabilistic framework for phylogenetic gain-loss-duplication models. The framework is based on a novel elementary representation by dependent random variables with well-characterized conditional distributions: binomial, Pólya (negative binomial), and Poisson.</p><p>The corresponding graphical model yields exact numerical procedures for computing the likelihood and the posterior distribution of ancestral copy numbers. The resulting algorithms take quadratic time in the total number of copies. In addition, we show how the likelihood gradient can be computed by a linear-time algorithm.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580922000247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene gain-loss-duplication models are commonly based on continuous-time birth–death processes. Employed in a phylogenetic context, such models have been increasingly popular in studies of gene content evolution across multiple genomes. While the applications are becoming more varied and demanding, bioinformatics methods for probabilistic inference on copy numbers (or integer-valued evolutionary characters, in general) are scarce.
We describe a flexible probabilistic framework for phylogenetic gain-loss-duplication models. The framework is based on a novel elementary representation by dependent random variables with well-characterized conditional distributions: binomial, Pólya (negative binomial), and Poisson.
The corresponding graphical model yields exact numerical procedures for computing the likelihood and the posterior distribution of ancestral copy numbers. The resulting algorithms take quadratic time in the total number of copies. In addition, we show how the likelihood gradient can be computed by a linear-time algorithm.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.