Andreas Saurwein, Matthias Nobis, Shigeyoshi Inoue and Bernhard Rieger*,
{"title":"Synthesis of a Triphenylphosphinimide-Substituted Silirane as a “Masked” Acyclic Silylene","authors":"Andreas Saurwein, Matthias Nobis, Shigeyoshi Inoue and Bernhard Rieger*, ","doi":"10.1021/acs.inorgchem.2c00790","DOIUrl":null,"url":null,"abstract":"Phosphinimides are long known as useful ligands in transition metal chemistry, but examples of these in low-valent silicon chemistry are rather rare. Hence, in this work, we report on the implementation of a triphenylphosphinimide moiety as a ligand of a novel silylene that is trapped as a silirane with cyclohexene. By performing activation reactions with B(p-Tol)3, HSiEt3, N2O, and NH3, we demonstrate that the silirane exhibits a silylene-like behavior, making it a \"masked\" silylene. Furthermore, we treated the silirane with ethylene, propylene, and trans-butene, which led to an olefin exchange. In the case of ethylene and propylene, an additional insertion of the olefin into the silicon-silicon bonds of the respective siliranes could be achieved. As the insertion of trans-butene was not feasible, we surmise that the scope of this reactivity is restricted by the steric demand of the olefin.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"61 26","pages":"9983–9989"},"PeriodicalIF":4.3000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00790","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1
Abstract
Phosphinimides are long known as useful ligands in transition metal chemistry, but examples of these in low-valent silicon chemistry are rather rare. Hence, in this work, we report on the implementation of a triphenylphosphinimide moiety as a ligand of a novel silylene that is trapped as a silirane with cyclohexene. By performing activation reactions with B(p-Tol)3, HSiEt3, N2O, and NH3, we demonstrate that the silirane exhibits a silylene-like behavior, making it a "masked" silylene. Furthermore, we treated the silirane with ethylene, propylene, and trans-butene, which led to an olefin exchange. In the case of ethylene and propylene, an additional insertion of the olefin into the silicon-silicon bonds of the respective siliranes could be achieved. As the insertion of trans-butene was not feasible, we surmise that the scope of this reactivity is restricted by the steric demand of the olefin.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.