{"title":"PPARγ Mediates Protective Effect against Hepatic Ischemia/Reperfusion Injury via NF-κB Pathway.","authors":"Xinyu Liu, Ping Zhang, Xianqing Song, Hengguan Cui, Weixing Shen","doi":"10.1080/08941939.2022.2090033","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatic ischemia/reperfusion injury (HIRI) is an unavoidable complication in liver surgery, however its pathological process is still unclear. Therefore, in this study, the role and mechanism of peroxisome proliferator-activated receptor gamma (PPARγ) was investigated in HIRI.</p><p><strong>Materials and methods: </strong>We constructed mice models with HIRI and L02 cell models insulted hypoxia/re-oxygenation (H/R). PPARγ agonist rosiglitazone was administered prior to HIRI in mice and PPARγ-siRNA was to H/R treatment in L02 cells. Liver injury was measured by serum ALT, AST and LDH levels and performing H&E staining; the inflammatory injury was reflected by inflammatory markers IL-1β, IL-6 and TNF-α, which were assayed by Real-time PCR and Western blotting, MPO activity was determined using commercial kits; oxidative stress injury was evaluated by iNOS, MDA, SOD and GSH-PX levels; apoptosis was detected by cleaved-Caspase-3, TUNEL staining and flow cytometry; NF-κB signaling activation was reflected by phosphorylation of IκBα (p-IκBα) and nuclear translocation of NF-κB p65.</p><p><strong>Results: </strong>The level of PPARγ expression was obviously down-regulated both in mice liver subjected to IRI and in L02 cells to H/R. Overexpression of PPARγ presented protective effect on HIRI by reducing serum levels of aminotransferase and hepatic necrosis, inhibiting inflammation and apoptosis and alleviating oxidative stress in vivo. But PPARγ-siRNA aggravate H/R insult by promoting inflammation and apoptosis in vitro. Mechanistically, the NF-κB pathway activity was increased with PPARγ down-regulation by PPARγ-siRNA. Importantly, inhibition of NF-κB signaling abolished PPARγ knockdown-mediated hepatic injury.</p><p><strong>Conclusions: </strong>PPARγ present protective effects on HIRI by attenuating liver injury, inflammatory response, oxidative stress and apoptosis in vivo and in vitro, and its mechanism may be related to down-regulation of NF-κB signaling.</p>","PeriodicalId":284931,"journal":{"name":"Journal of investigative surgery : the official journal of the Academy of Surgical Research","volume":" ","pages":"1648-1659"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of investigative surgery : the official journal of the Academy of Surgical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08941939.2022.2090033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Hepatic ischemia/reperfusion injury (HIRI) is an unavoidable complication in liver surgery, however its pathological process is still unclear. Therefore, in this study, the role and mechanism of peroxisome proliferator-activated receptor gamma (PPARγ) was investigated in HIRI.
Materials and methods: We constructed mice models with HIRI and L02 cell models insulted hypoxia/re-oxygenation (H/R). PPARγ agonist rosiglitazone was administered prior to HIRI in mice and PPARγ-siRNA was to H/R treatment in L02 cells. Liver injury was measured by serum ALT, AST and LDH levels and performing H&E staining; the inflammatory injury was reflected by inflammatory markers IL-1β, IL-6 and TNF-α, which were assayed by Real-time PCR and Western blotting, MPO activity was determined using commercial kits; oxidative stress injury was evaluated by iNOS, MDA, SOD and GSH-PX levels; apoptosis was detected by cleaved-Caspase-3, TUNEL staining and flow cytometry; NF-κB signaling activation was reflected by phosphorylation of IκBα (p-IκBα) and nuclear translocation of NF-κB p65.
Results: The level of PPARγ expression was obviously down-regulated both in mice liver subjected to IRI and in L02 cells to H/R. Overexpression of PPARγ presented protective effect on HIRI by reducing serum levels of aminotransferase and hepatic necrosis, inhibiting inflammation and apoptosis and alleviating oxidative stress in vivo. But PPARγ-siRNA aggravate H/R insult by promoting inflammation and apoptosis in vitro. Mechanistically, the NF-κB pathway activity was increased with PPARγ down-regulation by PPARγ-siRNA. Importantly, inhibition of NF-κB signaling abolished PPARγ knockdown-mediated hepatic injury.
Conclusions: PPARγ present protective effects on HIRI by attenuating liver injury, inflammatory response, oxidative stress and apoptosis in vivo and in vitro, and its mechanism may be related to down-regulation of NF-κB signaling.